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This book will help you learn the fundamentals of electricity and electronics without taking a for-
mal course. It can serve as a do-it-yourself study guide or as a classroom text. This seventh edition 
brings the book up to date with modern electronics. There is a much greater emphasis on the use of 
integrated circuits and practical electronic design.

If you need a mathematics or physics refresher, you can select from several of Stan Gibilisco’s 
McGraw Hill books dedicated to those topics. If you want to bolster your mathematics knowledge 
base before you start this course, study Algebra Know-It-All and Pre-Calculus Know-It-All. On the 
practical side, check out Electricity Experiments You Can Do at Home.

If you get bitten by the microcontroller bug, then you’ll find Simon Monk’s Programming 
Arduino: Getting Started with Sketches and Programming Arduino Next Steps: Going Further with 
Sketches useful companions to this book.

In this edition, the chapter, section, and final exam quizzes are now provided as a separate 
download. You can find these at http://simonmonk.org/tyee7 or on the book’s landing page on 
mhprofessional.com.

We welcome ideas and suggestions for future editions.
Simon Monk
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you must understand some physics principles to grasp the fundamentals of electricity 
and electronics. In science, we can talk about qualitative things or quantitative things, that is, “what” 
versus “how much.” For now, let’s focus on “what” and worry about “how much” later!

Atoms
All matter consists of countless tiny particles in constant motion. These particles have density far 
greater than anything we ever see. The matter we encounter in our everyday lives contains mostly 
space, and almost no “real stuff.” Matter seems continuous to us only because of the particles’ sub-
microscopic size and incredible speed. Each chemical element has its own unique type of particle 
called its atom.

Atoms of different elements always differ! The slightest change in an atom can make a tremen-
dous difference in its behavior. You can live by breathing pure oxygen, but you couldn’t survive in 
an atmosphere comprising pure nitrogen. Oxygen will cause metal to corrode, but nitrogen will 
not. Wood will burn in an atmosphere of pure oxygen but won’t even ignite in pure nitrogen. 
Nevertheless, both oxygen and nitrogen are gases at room temperature and pressure. Neither gas  
has any color or odor. These two substances differ because oxygen has eight protons, while nitrogen has  
only seven.

Nature provides countless situations in which a slight change in atomic structure makes a major 
difference in the way a sample of matter behaves. In some cases, we can force such changes on atoms 
(hydrogen into helium, for example, in a nuclear fusion reaction); in other cases, a minor change 
presents difficulties so great that people have never made them happen (lead into gold, for example).

Protons, Neutrons, and Atomic Numbers
The nucleus, or central part, of an atom gives an element its identity. An atomic nucleus contains 
two kinds of particles, the proton and the neutron, both of which have incredible density. A tea-
spoonful of protons or neutrons, packed tightly together, would weigh tons at the earth’s surface. 
Protons and neutrons have nearly identical mass, but the proton has an electric charge while the 
neutron does not.

3
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The simplest and most abundant element in the universe, hydrogen, has a nucleus containing 
one proton. Sometimes a nucleus of hydrogen has a neutron or two along with the proton, but not 
very often. The second most common element is helium. Usually, a helium atom has a nucleus with 
two protons and two neutrons. Inside the sun, nuclear fusion converts hydrogen into helium, gen-
erating the energy that makes the sun shine. The process is also responsible for the energy produced 
by a hydrogen bomb.

Every proton in the universe is identical to every other proton. Neutrons are all alike, too. The 
number of protons in an element’s nucleus, the atomic number, gives that element its unique iden-
tity. With three protons in a nucleus we get lithium, a light metal solid at room temperature that 
reacts easily with gases, such as oxygen or chlorine. With four protons in the nucleus we get beryl-
lium, also a light metal solid at room temperature. Add three more protons, however, and we have 
nitrogen, which is a gas at room temperature.

In general, as the number of protons in an element’s nucleus increases, the number of neutrons 
also increases. Elements with high atomic numbers, such as lead, are therefore much more dense 
than elements with low atomic numbers, such as carbon. If you hold a lead shot in one hand and a 
similar-sized piece of charcoal in the other hand, you’ll notice this difference.

Isotopes and Atomic Weights
For a given element, such as oxygen, the number of neutrons can vary. But no matter what the 
number of neutrons, the element keeps its identity, based on the atomic number. Differing numbers 
of neutrons result in various isotopes for a given element.

Each element has one particular isotope that occurs most often in nature, but all elements have 
multiple isotopes. Changing the number of neutrons in an element’s nucleus results in a difference 
in the weight, and also a difference in the density, of the element. Chemists and physicists call 
hydrogen whose atoms contain a neutron or two in the nucleus (along with the lone proton) heavy 
hydrogen for good reason!

The atomic weight of an element approximately equals the sum of the number of protons and 
the number of neutrons in the nucleus. Common carbon has an atomic weight of 12. We call it 
carbon 12 (symbolized C12). But a less-often-found isotope has an atomic weight very close to 14, 
so we call it carbon 14 (symbolized C14).

Electrons
Surrounding the nucleus of an atom, we usually find a “swarm” of particles called electrons. An 
electron carries an electric charge that’s quantitatively equal to, but qualitatively opposite from, the 
charge on a proton. Physicists arbitrarily call the electron charge negative, and the proton charge 
positive. The charge on a single electron or proton constitutes the smallest possible quantity of elec-
tric charge. All charge quantities, no matter how great, are theoretically whole-number multiples of 
this so-called unit electric charge.

One of the earliest ideas about the atom pictured the electrons embedded in the nucleus, like 
raisins in a cake. Later, scientists imagined the electrons as orbiting the nucleus, making the atom 
resemble a miniature solar system with the electrons as “planets,” as shown in Fig. 1-1.

Today, we know that the electrons move so fast, with patterns of motion so complex, that we 
can’t pinpoint any single electron at any given instant of time. We can, however, say that at any 
moment, a particular electron will just as likely “reside” inside a defined sphere as outside it. We call 

4    Background Physics
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an imaginary sphere of this sort, centered at the nucleus of an atom, an electron shell. These shells 
have specific, predictable radii. As a shell’s radius increases, the amount of energy in an electron 
“residing in” the shell also increases. Electrons commonly “jump” from one shell to another within 
an atom, thereby gaining energy, as shown in Fig. 1-2. Electrons can also “fall” from one shell to 
another within an atom, thereby losing energy.

Electrons can move easily from one atom to another in some materials. In other substances, it is 
difficult to get electrons to move. But in any case, we can move electrons a lot more easily than we 
can move protons. Electricity almost always results, in some way, from the motion of electrons in a 

Electrons    5

Electron
orbits Nucleus

Electrons

Electron

1-1  �  An early model of  
the atom, developed 
around the year 1900. 
Electrostatic attraction 
holds the electrons in 
“orbits” around the 
nucleus.

Electron in
lower shell

Electron in
higher shell

Electron
shells

Path of electron
in transition

Electron
before “jump”

Electron
after “jump”

1-2  �  Electrons move around the nucleus of an atom at 
defined levels, called shells, which correspond to 
discrete energy states. Here, an electron gains energy 
within an atom.
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material. Electrons are much lighter than protons or neutrons. In fact, compared to the nucleus of 
an atom, the electrons weigh practically nothing.

Quite often, the number of electrons in an atom equals the number of protons. The negative 
charges, therefore, exactly cancel out the positive ones, and we get an electrically neutral atom, where 
“neutral” means “having a net charge of zero.” Under some conditions, an excess or shortage of 
electrons can occur. High levels of radiant energy, extreme heat, or the presence of an electric field 
(discussed later) can “knock” or “throw” electrons loose from atoms, upsetting the balance.

Ions
If an atom has more or fewer electrons than protons, then the atom carries an electrical charge. A 
shortage of electrons produces a positive charge; an excess of electrons produces a negative charge. 
The element’s identity remains the same no matter how great the excess or shortage of electrons. 
In the extreme, all the electrons might leave the influence of an atom, leaving only the nucleus; 
but even then, we still have the same element. We call an electrically charged atom an ion. When a 
substance contains many ions, we say that the substance is ionized.

The gases in the earth’s atmosphere become ionized at high altitudes, especially during the 
daylight hours. Radiation from the sun, as well as a constant barrage of high-speed subatomic par-
ticles from space, strips electrons from the nuclei. The ionized gases concentrate at various altitudes, 
sometimes returning signals from surface-based radio transmitters to the earth, allowing for long-
distance broadcasting and communication.

An ionized material can conduct electricity fairly well even if, under normal conditions, it 
conducts poorly or not at all. Ionized air allows a lightning stroke (a rapid electrical discharge that 
causes a visible flash) hundreds or even thousands of meters long to occur, for example. The ioniza-
tion, caused by a powerful electric field, takes place along a jagged, narrow path called the channel. 
During the stroke, the atomic nuclei quickly attract stray electrons back, and the air returns to its 
electrically neutral, normal state.

An element can exist as an ion and also as an isotope different from the most common isotope. 
For example, an atom of carbon might have eight neutrons rather than the usual six (so it’s C14 
rather than C12), and it might have been stripped of an electron, giving it a positive unit electric 
charge (so it’s a positive ion). Physicists and chemists call a positive ion a cation (pronounced “cat-
eye-on”) and a negative ion an anion (pronounced “an-eye-on”).

Compounds
Atoms of two or more different elements can join together by sharing electrons, forming a chemical 
compound. One of the most common compounds is water, the result of two hydrogen atoms joining 
with an atom of oxygen. As you can imagine, many chemical compounds occur in nature, and we 
can create many more in chemical laboratories.

A compound differs from a simple mixture of elements. If we mix hydrogen gas with oxygen 
gas, we get a colorless, odorless gas. But a spark or flame will cause the atoms to combine in a chemi-
cal reaction to give us the compound we call water, liberating light and heat energy. Under ideal 
conditions, a violent explosion will occur as the atoms merge almost instantly, producing a “hybrid” 
particle, as shown in Fig. 1-3.

Compounds often, but not always, have properties that drastically differ from either (or any) 
of the elements that make them up. At room temperature and pressure, both hydrogen and oxygen 
are gases. But under the same conditions, water exists mainly in liquid form. If the temperature falls 
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enough, water turns solid at standard pressure. If it gets hot enough, water becomes a gas, odorless 
and colorless, just like hydrogen or oxygen.

Another common example of a compound is rust, which forms when iron joins with oxygen. 
While iron appears to us as a dull gray solid and oxygen appears as a gas, rust shows up as a red-
brown powder, completely unlike either iron or oxygen. The chemical reaction that produces rust 
requires a lot more time than the reaction that produces water. 

Molecules
When atoms of elements join in groups of two or more, we call the resulting particles molecules. 
Figure 1-3 portrays a molecule of water. Oxygen atoms in the earth’s atmosphere usually pair up to 
form molecules, so you’ll sometimes see oxygen symbolized as O2. The “O” represents oxygen, and 
the subscript 2 indicates two atoms per molecule. We symbolize water by writing H2O to show that 
each molecule contains two atoms of hydrogen and one atom of oxygen.

Sometimes oxygen atoms exist all by themselves; then, we denote the basic particle as O, indi-
cating a lone atom. Sometimes, three atoms of oxygen “stick” together to produce a molecule of 
ozone, a gas that has received attention in environmental news. We symbolize ozone by writing O3. 
When an element occurs as single atoms, we call the substance monatomic. When an element occurs 
as two-atom molecules, we call the substance diatomic. When an element occurs as three-atom mol-
ecules, we call the substance triatomic.

Whether we find it in solid, liquid, or gaseous form, all matter consists of molecules or atoms 
that constantly move. As we increase the temperature, the particles in any given medium move faster. 
In a solid, we find molecules interlocked in a rigid matrix so they can’t move much (Fig. 1- 4A), 
although they vibrate continuously. In a liquid, more space exists between the molecules (Fig. 1- 4B), 
allowing them to slide around. In a gas, still more space separates the molecules, so they can fly freely 
(Fig. 1- 4C), sometimes crashing into each other.

Molecules    7
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1-3  �  Two hydrogen atoms readily 
share electrons with a single 
atom of oxygen.
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Conductors
We define an electrical conductor as a substance in which the electrons can move with ease. The best 
known conductor at room temperature is pure elemental silver. Copper and aluminum also conduct 
electricity well at room temperature. Various other metals constitute fair to good conductors. In 
most electrical circuits and systems, we find copper or aluminum wire.

Some liquids conduct electricity quite well. Mercury provides a good example. Salt water con-
ducts fairly well, but it depends on the concentration of dissolved salt. Gases or mixtures of gases, 
such as air, usually fail to conduct electricity because the large distances between the atoms or 
molecules prevent the free exchange of electrons. If a gas becomes ionized, however, it can conduct 
fairly well.

In an electrical conductor, the electrons “jump” from atom to atom (Fig. 1-5), predominantly 
from negatively charged locations toward positively charged locations. In a typical electrical circuit, 
many trillions, quadrillions, or quintillions of electrons pass a given point every second.

8    Background Physics
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Insulators
An electrical insulator prevents electron movement among atoms, except occasionally in tiny 
amounts. Most gases make good electrical insulators. Glass, dry wood, dry paper, and plastics also 
insulate well. Pure water normally insulates, although some dissolved solids can cause it to conduct. 
Certain metal oxides can function as good insulators, even if the metal in its pure form makes a 
good conductor.

Sometimes, you’ll hear an insulating material called a dielectric. This term arises from the fact 
that a sample of the substance can keep electrical charges apart to form an electric dipole, preventing 
the flow of electrons that would otherwise equalize the charge difference. We encounter dielectrics 
in specialized components, such as capacitors, through which electrons should not directly travel.

Engineers commonly use porcelain or glass in electrical systems. These devices, called insulators 
in the passive rather than the active sense, are manufactured in various shapes and sizes for different 
applications. You can see them on utility lines that carry high voltage. The insulators hold the wire 
up without risking a short circuit with a metal tower or a bleedoff (slow discharge) through a salt-
water-soaked wooden pole.

If we try hard enough, we can force almost any electrical insulator to let electrons move by forc-
ing ionization to occur. When electrons are stripped away from their atoms, they can roam more or 
less freely. Sometimes a normally insulating material gets charred, or melts down, or gets perforated 
by a spark. Then it loses its insulating properties, and electrons can move through it.

Resistors
Some substances, such as carbon, allow electrons to move among atoms fairly well. We can modify 
the conductivity of such materials by adding impurities such as clay to a carbon paste, or by winding 
a long, thin strand of the material into a coil. When we manufacture a component with the intent of 
giving it a specific amount of conductivity, we call it a resistor. These components allow us to limit 
or control the rate of electron flow in a device or system. As the conductivity improves, the resistance 
decreases. As the conductivity goes down, the resistance goes up. Conductivity and resistance vary 
in inverse proportion.

Engineers express resistance in units called ohms. The higher the resistance in ohms, the more 
opposition a substance offers to the movement of electrons. For wires, the resistance is sometimes 
specified in terms of ohms per unit length (foot, meter, kilometer, or mile). In an electrical system, 
engineers strive to minimize the resistance (or ohmic value) because resistance converts electricity 
into heat, reducing the efficiency that the engineers want and increasing the loss that they don’t want.

Semiconductors
In a semiconductor, electrons flow easily under some conditions, and with difficulty under other 
conditions. In their pure form, some semiconductors carry electrons almost as easily as good con-
ductors, while other semiconductors conduct almost as poorly as insulators. But semiconductors 
differ fundamentally from plain conductors, insulators, or resistors. In the manufacture of a semi-
conductor device, chemists treat the materials so that they conduct well some of the time, and 
poorly some of the time—and we can control the conductivity by altering the conditions. We find 
semiconductors in diodes, transistors, and integrated circuits.
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