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9

This book is designed for a first course in engineering materials. The field that 
covers this area of the engineering profession has come to be known as “materi-
als science and engineering.” To me, this label serves two important functions. 
First, it is an accurate description of the balance between scientific principles 
and practical engineering that is required in selecting the proper materials 
for modern technology. Second, it gives us a guide to organizing this book. 
After a short introductory chapter, “science” serves as a label for Part I on 
“The Fundamentals.” Chapters 2 through 10 cover various topics in applied 
physics and chemistry. These are the foundation for understanding the prin-
ciples of “materials science.” I assume that some students take this course at 
the freshman or sophomore level and may not yet have taken their required 
coursework in chemistry and physics. As a result, Part I is intended to be self-
contained. A previous course in chemistry or physics is certainly helpful, but 
should not be necessary. If an entire class has finished freshman chemistry, 
Chapter 2 (atomic bonding) could be left as optional reading, but it is impor-
tant not to overlook the role of bonding in defining the fundamental types 
of engineering materials. The remaining chapters in Part I are less optional, 
as they describe the key topics of materials science. Chapter 3 outlines the 
ideal, crystalline structures of important materials. Chapter 4 introduces the 
structural imperfections found in real, engineering materials. These structural 
defects are the bases of solid-state diffusion (Chapter 5) and plastic deforma-
tion in metals (Chapter 6). Chapter 6 also includes a broad range of mechani-
cal behavior for various engineering materials. Similarly, Chapter 7 covers the 
thermal behavior of these materials. Subjecting materials to various mechani-
cal and thermal processes can lead to their failure, the subject of Chapter 8. 
In addition, the systematic analysis of material failures can lead to the pre-
vention of future catastrophes. Chapters 9 and 10 are especially important in 
providing a bridge between “materials science” and “materials engineering.” 
Phase diagrams (Chapter 9) are an effective tool for describing the equilib-
rium microstructures of practical engineering materials. Instructors will note 
that this topic is introduced in a descriptive and empirical way. Since some stu-
dents in this course may not have taken a course in thermodynamics, I avoid 
the use of the free-energy property. Kinetics (Chapter 10) is the foundation of 
the heat treatment of engineering materials.

The words “materials engineering” give us a label for Part II of the book 
that deals with “Materials and Their Applications.” First, we discuss the five cat-
egories of structural materials: metals, ceramics, and glasses (Chapter 11) and 

Preface
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10	 Preface

polymers and composites (Chapter 12). In both chapters, we give examples of 
each type of structural material and describe their processing, the techniques 
used to produce the materials. In Chapter 13, we discuss electronic materials and 
discover a sixth category of materials, semiconductors, based on an electrical 
rather than bonding classification system. Metals are generally good electrical 
conductors, while ceramics, glasses, and polymers are generally good insulators, 
and semiconductors are intermediate. The exceptional discovery of supercon-
ductivity in certain ceramic materials at relatively high temperatures augments 
the long-standing use of superconductivity in certain metals at very low tem-
peratures. Chapter 14 covers optical behavior that determines the application of 
many materials, from traditional glass windows to some of the latest advances in 
telecommunications. A wide variety of materials is also discussed in Chapter 14. 
Traditional metallic and ceramic magnets are being supplemented by supercon-
ducting metals and ceramics, which can provide some intriguing design appli-
cations based on their magnetic behavior. Finally, in Chapter 15 (Materials in 
Engineering Design), we see that our previous discussions of properties have 
left us with “design parameters.” Herein lies a final bridge between the princi-
ples of materials science and the use of those materials in modern engineering 
designs. We also must note that chemical degradation, radiation damage, wear, 
recycling, and reuse must be considered in making a final judgment on a materi-
als application.

I hope that students and instructors alike will find what I have attempted to 
produce: a clear and readable textbook organized around the title of this impor-
tant branch of engineering. It is also worth noting that materials play a central 
role across the broad spectrum of contemporary science and technology. In the 
report Science: The End of the Frontier? from the American Association for the 
Advancement of Science, 10 of the 26 technologies identified at the forefront of 
economic growth are various types of advanced materials.

In the presentation of this book, I have attempted to be generous with 
examples and practice problems within each chapter, and I have tried to be even 
more generous with the end-of-chapter homework problems (with the level of 
difficulty for the homework problems clearly noted). Problems dealing with the 
role of materials in the engineering design process are noted with the use of a 
design icon  . One of the most enjoyable parts of writing the book was the prep-
aration of biographical footnotes for those cases in which a person’s name has 
become intimately associated with a basic concept in materials science and engi-
neering. I suspect that most readers will share my fascination with these great 
contributors to science and engineering from the distant and not-so-distant past. 
In addition to a substantial set of useful data, the Appendices provide convenient 
location of materials properties and key term definitions.

The various editions of this book have been produced during a period of 
fundamental change in the field of materials science and engineering. This change 
was exemplified by the change of name in the Fall of 1986 for the “American 
Society for Metals” to “ASM International”—a society for materials, as opposed 
to metals only. An adequate introduction to materials science can no longer be a 
traditional treatment of physical metallurgy with supplementary introductions to 
nonmetallic materials. The first edition was based on a balanced treatment of the 
full spectrum of engineering materials.

A01_SHAC0996_09_GE_FM.indd   10 10/10/2022   19:36



	 Preface	 11

Subsequent editions have reinforced that balanced approach with the 
timely addition of new materials that are playing key roles in the economy 
of the twenty-first century: lightweight metal alloys, “high tech” ceramics for 
advanced structural applications, engineering polymers for metal substitu-
tion, advanced composites for aerospace applications, increasingly miniaturized 
semiconductor devices, high-temperature ceramic superconductors, fullerene 
carbons, graphene, engineered biomaterials, and biological materials. Since the 
debut of the first edition, we have also seen breakthroughs in materials char-
acterization, such as the evolution of the high-resolution transmission electron 
microscope (HRTEM), and in materials processing, such as additive manufac-
turing (AM). “Feature boxes” have been introduced in recent editions. These 
one- or two-page case studies labeled “The Material World” are located in 
each chapter to provide a focus on some fascinating topics in the world of both 
engineered and natural materials. Another feature from recent editions is to 
emphasize the concept of “Powers of Ten.” In Chapter 1, we point out that an 
underlying principle of materials science is that understanding the behavior of 
materials in engineering designs (on the human scale) is obtained by looking 
at mechanisms that occur at various fine scales, such as the atomic-scale diffu-
sion of carbon atoms involved in the heat treatment of steel. There is a full ten 
orders of magnitude difference between the size of typical engineered prod-
ucts and the size of typical atoms. Much of modern engineering practice has 
depended on engineering designs based on micrometer-scale structures, such 
as the transistors in an integrated circuit. Increasingly, engineers are designing 
systems involving the nanometer-scale. At various times throughout the text, a 
Powers of Ten icon will be used to highlight discussions that demonstrate this 
structure-property relationship.

		  New to This Edition

As with previous editions, an effort has been made to add the most important 
advances in engineering materials, as well as respond to recommendations of 
previous users for additional content coverage. The results are:

•	 The addition of Learning Objectives to each chapter to give students clearer 
goals for the knowledge to be acquired.

•	 The inclusion of end-of-chapter conceptual problems throughout the text.
•	 The inclusion of all end-of-chapter problems in the MasteringTM platform.
•	 The upgrade of images to full color where appropriate to provide a more 

vibrant presentation of visual information throughout the book.
•	 Updated discussions of the role of engineering materials in smartphones and 

tablets, increasingly ubiquitous parts of our everyday lives.
•	 Enhanced discussion of the nature of optical fibers in telecommunication.
•	 The refreshing and updating of all discussions of contemporary materials in 

modern engineering design, including an emphasis on the role of sustainability.
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With the Power of Mastering Engineering for 
Introduction to Materials Science for Engineers
MasteringTM is the teaching and learning platform that empowers every student. 
By combining trusted authors’ content with digital tools developed to engage students and 
emulate the office hours experience, Mastering personalizes learning and improves results for 
each student.

Empower each learner
Each student learns at a different pace. Personalized learning, including optional hints and 
wrong-answer feedback, pinpoints the precise areas where each student needs practice, giving 
all students the support they need — when and where they need it — to be successful.

Learn more at www.mlm.pearson.com/global/
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CHAPTER 1
Materials for Engineering

After studying this chapter, you should be 
able to:
1.	 Explain how materials have played 

a central role in the development of 
human cultures throughout history.

2.	 Distinguish between the terms materials 
science and materials engineering.

3.	 Identify six categories of engineering 
materials, five types of structural 
materials, and semiconductors as one 
example of electronic materials.

The future of transportation 
will include new advances in 
materials such as this glass road 
sign allowing instantaneous 
route changes and updates. 
(Courtesy of Corning Glass 
Works.)

LEARNING OBJECTIVES

	 1.1	 The Material World

We live in a world of material possessions that largely define our social rela-
tionships and economic quality of life. The material possessions of our earliest 
ancestors were probably their tools and weapons. In fact, the most popular way 
of naming the era of early human civilization is in terms of the materials from 
which these tools and weapons were made. The Stone Age has been traced as far 
back as 2.5 million years ago when human ancestors, or hominids, chipped stones 

(a)	Describe how the atomic- and microscopic-scale structure 
of materials help us understand the properties of those 
materials that are used in engineering applications.

(b)	Recall the materials tetrahedron that includes the terms 
structure and properties as well as their relationship with the 
processing of materials and their ultimate performance in an 
engineering design.

5.	 List the wide range of dimensional scales involved in materials 
science and engineering:
(a)	The atomic scale: 1 : 10−10 meter
(b)	The nanoscale: 1 : 10−9 meter
(c)	 The microscale: 1 : 10−6 meter
(d)	The milliscale: 1 : 10−3 meter
(e)	 The human scale: 1 meter

4.	
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18	 CHAPTER 1  Materials for Engineering

to form weapons for hunting (Figure 1.1). The Bronze Age roughly spanned the 
period from 2000 b.c. to 1000 b.c. and represents the foundation of metallurgy, 
in which alloys of copper and tin were discovered to produce superior tools and 
weapons. (An alloy is a metal composed of more than one element.)

Contemporary archaeologists note that an earlier but less well known 
“Copper Age” existed between roughly 4000 b.c. and 3000 b.c. in Europe, in 
which relatively pure copper was used before tin became available. The limited 
utility of those copper products provided an early lesson in the importance of 
proper alloy additions. The Iron Age defines the period from 1000 b.c. to 1 b.c. 
By 500 b.c., iron alloys had largely replaced bronze for tool and weapon making 
in Europe.

Although archaeologists do not refer to a “pottery age,” the presence of 
domestic vessels made from baked clay has provided some of the best descrip-
tions of human cultures for thousands of years. Similarly, glass artifacts have 
been traced back to 4000 b.c. in Mesopotamia.

Modern culture in the second half of the 20th century is sometimes referred 
to as “plastic,” a not entirely complimentary reference to the lightweight and 
economical polymeric materials from which so many products are made. Some 
observers have suggested instead that this same time frame should be labeled the 
“silicon age,” given the pervasive impact of modern electronics largely based on 
silicon technology.

FIGURE 1.1  Stone age tools. (Georg Hergenhan / 123RF.)
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	 1.2	 Materials Science and Engineering

Since the 1960s, the term that has come to label the general branch of engineering 
concerned with materials is materials science and engineering. This label is accu-
rate in that this field is a true blend of fundamental scientific studies and practical 
engineering. It has grown to include contributions from many traditional fields, 
including metallurgy, ceramic engineering, polymer chemistry, condensed matter 
physics, and physical chemistry.

The term “materials science and engineering” will serve a special function 
in this introductory textbook; it will provide the basis for the text’s organiza-
tion. First, the word science describes the topics covered in Chapters 2 through 
10, which deal with the fundamentals of structure, classification, and properties. 
Second, the word materials describes Chapters 11 through 13, which deal with 
the five types of structural materials (Chapters 11 and 12) and various electronic 
materials, especially semiconductors (Chapter 13), along with optical and mag-
netic materials (Chapter 14). Finally, the word engineering describes Chapter 15, 
which puts the materials to work with discussions of key aspects of the selection 
of the right materials for the right job, along with some caution about the issue of 
environmental degradation in those real-world applications.

	 1.3	 Six Materials That Changed Your World

The most obvious question to be addressed by the engineering student entering 
an introductory course on materials is, “What materials are available to me?” 
Various classification systems are possible for the wide-ranging answer to this 
question. In this book, we distinguish six categories that encompass the materi-
als available to practicing engineers: metals, ceramics, glasses, polymers, compos-
ites, and semiconductors. We will introduce each of these categories with a single 
example.

STEEL BRIDGES—INTRODUCING METALS
If there is a “typical” material associated in the public’s mind with modern engi-
neering practice, it is structural steel. This versatile construction material has sev-
eral properties that we consider metallic: First, it is strong and can be readily 
formed into practical shapes. Second, its extensive, permanent deformability, or 
ductility, is an important asset in permitting small amounts of yielding to sud-
den and severe loads. For example, many Californians have been able to observe 
moderate earthquake activity that leaves windows of glass, which is relatively 
brittle (i.e., lacking in ductility), cracked, while steel-support framing still func-
tions normally. Third, a freshly cut steel surface has a characteristic metallic lus-
ter; and fourth, a steel bar shares a fundamental characteristic with other metals: 
It is a good conductor of electrical current.

Among the most familiar uses of structural steel are bridges, and one of the 
most famous and beautiful examples is the Golden Gate Bridge connecting San 
Francisco, California with Marin County to the north (Figure 1.2). The opening 
on May 27, 1937, allowed 200,000 local residents to stroll across the impressive 
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20	 CHAPTER 1  Materials for Engineering

new structure. The following day, a ribbon cutting ceremony inaugurated auto-
mobile traffic that has continued to be an important part of the fabric of life in 
the San Francisco Bay area for more than 80 years. For many years, the Golden 
Gate held the title of “longest suspension bridge” in the world (2,737 meters). 
Although new bridge technologies have provided newer holders of that title, the 
Golden Gate is still, in the words of a local historian, a “symphony in steel.”

Steel bridges continue to provide a combination of function and beauty with 
the Sundial Bridge in Redding, California being a stunning example (Figure 1.3). 
The Redding Bridge is a 66-meter pedestrian walkway designed by the famous 
Spanish architect Santiago Calatrava. It connects a walking trail system with the 
Turtle Bay Exploration Park. New bridges like this one are not merely serving as 
sculptural art projects. The aging infrastructure, including many bridges built as 
long as a century ago, also provides a challenge to engineers and the requirement 
for both maintenance and replacement of these important structures.

In Chapter 2, the nature of metals will be defined and placed in perspec-
tive relative to the other categories. It is useful to consider the extent of metallic 
behavior in the currently known range of chemical elements. Figure 1.4 highlights 
the chemical elements in the periodic table that are inherently metallic. This is a 
large family indeed. The shaded elements are the bases of the various engineer-
ing alloys, including the irons and steels (from Fe), aluminum alloys (Al), mag-
nesium alloys (Mg), titanium alloys (Ti), nickel alloys (Ni), zinc alloys (Zn), and 
copper alloys (Cu) [including the brasses (Cu, Zn)].

FIGURE 1.2  The Golden Gate Bridge north of San Francisco, California, is one of the 
most famous and most beautiful examples of a steel bridge. (© LOOK Die Bildagentur 
der Fotografen GmbH / Alamy.)
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FIGURE 1.3  The Sundial Bridge in Redding, California is a modern masterpiece of bridge 
design.
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FIGURE 1.4  Periodic table of the elements. Those elements that are inherently metallic in 
nature are shown in color.

TRANSPARENT OXIDES—INTRODUCING CERAMICS
Aluminum (Al) is a common metal, but aluminum oxide, a compound of alumi-
num and oxygen such as Al2O3, is typical of a fundamentally different family of 
engineering materials, ceramics. Aluminum oxide has two principal advantages 
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over metallic aluminum. First, Al2O3 is chemically stable in a wide variety of 
severe environments, whereas metallic aluminum would be oxidized (a term 
discussed further in Chapter 15). In fact, a common reaction product in the 
chemical degradation of aluminum is the more chemically stable oxide. Second, 
the ceramic Al2O3 has a significantly higher melting point (2020°C) than does 
the metallic Al (660°C), which makes Al2O3 a popular refractory (i.e., a high-
temperature-resistant material of wide use in industrial furnace construction). A 
variety of engineered alumina products are shown in Figure 1.5.

With its superior chemical and temperature-resistant properties, why isn’t 
Al2O3 used for applications such as automotive engines in place of metallic alumi-
num? The answer to this question lies in the most limiting property of ceramics—
brittleness. Aluminum and other metals have high ductility, a desirable property 
that permits them to undergo relatively severe impact loading without fracture, 
whereas aluminum oxide and other ceramics lack this property. Thus, ceramics 
are eliminated from many structural applications because they are brittle.

A significant achievement in materials technology is the development 
of transparent ceramics, which has made possible new products and substantial 
improvements in others (e.g., commercial lighting). To make traditionally opaque 
ceramics, such as aluminum oxide (Al2O3), into optically transparent materials 
required a fundamental change in manufacturing technology. Commercial ceram-
ics are frequently produced by heating crystalline powders to high temperatures 
until a relatively strong and dense product results. Traditional ceramics made in 
this way contained a substantial amount of residual porosity (see also the Feature 
Box, “Structure Leads to Properties”), corresponding to the open space between 
the original powder particles prior to high-temperature processing. A significant 
reduction in porosity resulted from a relatively simple invention* that involved 

FIGURE 1.5  A variety of alumina ceramic products are available for high-temperature 
(refractory) applications. (Courtesy of AdValue Technology.)

*R. L. Coble, U.S. Patent 3,026,210, March 20, 1962.
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THE MATERIAL WORLD 

Structure Leads to Properties

To understand the properties or observable char-
acteristics of engineering materials, it is necessary 
to understand their structure. Virtually every major 
property of the six materials’ categories outlined in 
this chapter will be shown to result directly from 
mechanisms occurring on a small scale (usually 
either the atomic or the microscopic level).

The dramatic effect that fine-scale structure 
has on large-scale properties is well illustrated by 
the development of transparent ceramics, just dis-
cussed in the introduction to ceramic materials. The 
microscopic-scale residual porosity in a traditional 
aluminum oxide leads to loss of visible light trans-
mission (i.e., a loss in transparency) by providing a 
light-scattering mechanism. Each Al2O3—air inter-
face at a pore surface is a source of light refraction 
(change of direction). Only about 0.3% porosity can 
cause Al2O3 to be translucent (capable of transmit-
ting a diffuse image), and 3% porosity can cause the 
material to be completely opaque. The elimination 
of porosity provided by the Lucalox patent (adding 
0.1 wt % MgO) produced a pore-free microstructure 

and a nearly transparent material with an important 
additional property—excellent resistance to chemi-
cal attack by high-temperature sodium vapor.

The example of translucent ceramics shows a 
typical and important demonstration of how prop-
erties of engineering materials follow directly from 
structure. Throughout this book, we shall be alert to 
the continuous demonstration of this interrelation-
ship for all the materials of importance to engineers. 
A contemporary example is given in the images 
below, a microstructure and the resulting translu-
cent disc of hydroxyapatite ceramic developed for 
biomedical applications. By using the Field-Assisted 
Sintering Technique (FAST) as highlighted in the 
Feature Box in Chapter 10, researchers were able to 
produce a material with minimal porosity (note the 
densely packed nano-scale grain structure in part a) 
and the resulting ability to transmit a visual image 
(part b). The effect of porosity on light transmission is 
discussed further in Chapter 14 (e.g., Figures 14.8 and 
14.9), and the importance of hydroxyapatite in ortho-
pedic prostheses is discussed further in Chapter 15.

(a)

(Courtesy of T. B. Tran and J. R. Groza, University of California, Davis.)

(b)

adding a small amount of impurity (0.1 wt % MgO), which caused the high-tem-
perature densification process for the Al2O3 powder to go to completion. Cylinders 
of translucent Al2O3 became the heart of the design of high-temperature (1000°C) 
sodium vapor lamps, which provide substantially higher illumination than do con-
ventional lightbulbs (100 lumens/W compared to 15 lumens/W).
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After the invention of transparent aluminum oxide and the result-
ing advancement in lighting technology, ceramic scientists and engineers 
have applied a similar approach to a wide range of compositions, includ-
ing the development of ceramics for laser technology, a topic covered 
more fully in Chapter 14. A prime example is yttrium-aluminum-oxide 
(Y3Al5O12 or YAG), typically with a small amount of neodymium (Nd) 
in a solution to provide the lasing property. These Nd:YAG lasers are 
used in a wide range of medical and engineering applications, including 
manufacturing technologies. It is also important to note that these trans-
parent laser materials are also made by a more traditional technique, viz. 
growing large single crystals from a melt as shown in Figure 1.6.

Aluminum oxide is typical of the traditional ceramics, with mag-
nesium oxide (MgO) and silica (SiO2) being other good examples. In 
addition, SiO2 is the basis of a large and complex family of silicates, 
which includes clays and claylike minerals. Silicon nitride (Si3N4) is an 
important nonoxide ceramic used in a variety of structural applications. 
The vast majority of commercially important ceramics are chemical 
compounds made up of at least one metallic element (see Figure 1.4) 
and one of five nonmetallic elements (C, N, O, P, or S). Figure 1.7 illus-
trates the various metals (in light color) and the five key nonmetals (in 
dark color) that can be combined to form an enormous range of ceramic 
materials. Bear in mind that many commercial ceramics include com-
pounds and solutions of many more than two elements, just as commer-
cial metal alloys are composed of many elements.

FIGURE 1.6  An yttrium-aluminum-oxide 
(Y3Al5O12 or YAG) crystal grown over 
a period of 21 days for use in laser rods. 
(James L. Amos / Science Source.)
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FIGURE 1.7  Periodic table with ceramic compounds indicated by a combination of one or 
more metallic elements (in light color) with one or more nonmetallic elements (in dark color). 
Note that elements silicon (Si) and germanium (Ge) are included with the metals in this 
figure but were not included in the periodic table shown in Figure 1.4. They are included here 
because, in elemental form, Si and Ge behave as semiconductors (Figure 1.16). Elemental tin 
(Sn) can be either a metal or a semiconductor, depending on its crystalline structure.
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SMARTPHONES AND TABLETS—INTRODUCING GLASSES
The metals and ceramics just introduced have a similar structural feature on the 
atomic scale: They are crystalline, which means that their constituent atoms are 
stacked together in a regular, repeating pattern. A distinction between metallic- 
and ceramic-type materials is that, by fairly simple processing techniques, many 
ceramics can be made in a noncrystalline form (i.e., their atoms are stacked in 
irregular, random patterns), which is illustrated in Figure 1.8. The general term 
for noncrystalline solids with compositions comparable to those of crystal-
line ceramics is glass (Figure 1.9). Most common glasses are silicates; ordinary 

(a) (b)

FIGURE 1.8  Schematic comparison of the atomic-scale structure of (a) a ceramic 
(crystalline) and (b) a glass (noncrystalline). The yellow circles represent a nonmetallic 
atom, and the green circles represent a metal atom.

FIGURE 1.9  Some common silicate glasses for engineering applications. These materials 
combine the important qualities of transmitting clear visual images and resisting 
chemically aggressive environments. (Courtesy of Corning Glass Works.)
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window glass is approximately 72% silica (SiO2) by weight, with the balance of 
the material being primarily sodium oxide (Na2O) and calcium oxide (CaO). 
Glasses share the property of brittleness with crystalline ceramics. Glasses are 
important engineering materials because of other properties, such as their ability 
to transmit visible light (as well as ultraviolet and infrared radiation) and chemi-
cal inertness.

In the decade following the introduction of the Apple iPhone in 2007, the 
annual sales of smartphones increased from 122 million to 1.5 billion in 2017. 
By 2025, there will be an estimated 6 billion mobile subscribers, roughly 70% 
of the earth’s population. The introduction of the Apple iPad in 2010 led to the 
similarly expanding role of tablet devices in our daily lives. The cover glass in 
these increasingly ubiquitous devices is one of the most common state-of-the- 
art glass materials used by the general public. As such device users are painfully 
aware, a major criterion for the cover glass, beyond the obvious optical transpar-
ency, is resistance to mechanical damage (scratching and breakage). A practical 
technique to provide improved mechanical performance is “chemical strengthen-
ing,” as discussed in Section 6.6 in which the chemical substitution of some rela-
tively large potassium ions for the smaller sodium ions in the silicate glass creates 
a compressive surface state that effectively resists such damage. Figure 1.10 shows 
some contemporary examples.

NYLON PARACHUTES—INTRODUCING POLYMERS
A major impact of modern engineering technology on everyday life has been 
made by the class of materials known as polymers. An alternative name for this 

(a) (b)

FIGURE 1.10  (a) The smartphone and tablet have joined the laptop computer as integral 
parts of our personal and business lives. (©  wavebreakmedia / Shutterstock) (b) Damage-
resistant cover glass is a central component of the design of iPhone 11. (Courtesy of 
Apple Inc.)
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category is plastics, which describes the extensive formability of many poly-
mers during fabrication. These synthetic, or human-made, materials represent a 
special branch of organic chemistry. Examples of inexpensive, functional poly-
mer products are readily available to each of us (Figure 1.11). The “mer” in a 
polymer is a single hydrocarbon molecule such as ethylene (C2H4). Polymers 
are long-chain molecules composed of many mers bonded together. The most 
common commercial polymer is polyethylene -(C2H4)-n where n can range from 
approximately 100 to 1,000. Figure 1.12 shows the relatively limited portion of 
the periodic table that is associated with commercial polymers. Many important 
polymers, including polyethylene, are simply compounds of hydrogen and car-
bon. Others contain oxygen (e.g., acrylics), nitrogen (nylons), fluorine (fluoro-
plastics), and silicon (silicones).

Nylon is an especially familiar example. Polyhexamethylene adipamide, or 
nylon, is a member of the family of synthetic polymers known as polyamides 
invented in 1935 at the DuPont Company. Nylon was the first commercially suc-
cessful polymer and was initially used as bristles in toothbrushes (1938) followed 
by the highly popular use as an alternative to silk stockings (1940). Developed as 
a synthetic alternative to silk, nylon became the focus of an intensive effort dur-
ing the early stages of World War II to replace the diminishing supply of Asian 
silk for parachutes and other military supplies. At the beginning of World War II, 
the fiber industry was dominated by the natural materials cotton and wool. By 
the end, synthetic fibers accounted for 25% of the market share. A contemporary 
example of a nylon parachute is shown in Figure 1.13. Today, nylon remains a 

FIGURE 1.11  Polymers are the basis of a wide range of common consumer products, 
often available for recycling. (PBWPIX / Alamy.)
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FIGURE 1.12  Periodic table with the elements associated with commercial polymers 
in color.

FIGURE 1.13  Since its development during World War II, nylon fabric remains the most 
popular material of choice for parachute designs. (Courtesy of Stringer/Agence France 
Presse/Getty Images.)
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popular fiber material, but it is also widely used in solid form for applications 
such as gears and bearings.

As the descriptive title implies, plastics commonly share with metals the 
desirable mechanical property of ductility. Unlike brittle ceramics, polymers 
are frequently lightweight, low-cost alternatives to metals in structural design 
applications. The nature of chemical bonding in polymeric materials will be 
explored in Chapter 2. Important bonding-related properties include lower 
strength compared with metals and lower melting point and higher chemical 
reactivity compared with ceramics and glasses. In spite of their limitations, 
polymers are highly versatile and useful materials. Substantial progress has 
been made in recent decades in the development of engineering polymers with 
sufficiently high strength and stiffness to permit substitution for traditional 
structural metals.

KEVLAR®-REINFORCED TIRES—INTRODUCING COMPOSITES
The structural engineering materials we have discussed so far—metals, ceramics/
glasses, and polymers—contain various elements and compounds that can be 
classified by their chemical bonding. Metals are associated with metallic bond-
ing, ceramics/glasses with ionic bonding, and polymers with covalent bonding. 
Such classifications are described further in Chapter 2. Another important set 
of materials is made up of some combinations of individual materials from the 
previous categories. This fourth group is composites, and an excellent example is 
fiberglass. This composite of glass fibers embedded in a polymer matrix is com-
monplace (Figure 1.14). Characteristic of good composites, fiberglass has the best 

FIGURE 1.14  Example of a fiberglass composite composed of microscopic-scale 
reinforcing glass fibers in a polymer matrix. (Courtesy of Owens-Corning Fiberglas 
Corporation.)
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properties of each component, producing a product that is superior to either of 
the components separately. The high strength of the small-diameter glass fibers is 
combined with the ductility of the polymer matrix to produce a strong material 
capable of withstanding the normal loading required of a structural material. 
There is no need to illustrate a region of the periodic table as characteristic of 
composites, since they involve virtually the entire table except for the noble 
gases (column 0), equivalent to an overlay of the periodic table coverage for met-
als, ceramics, and polymers combined.

Kevlar fiber reinforcements provide significant advances over traditional 
glass fibers for polymer–matrix composites. Kevlar is a DuPont trade name for 
poly p-phenyleneterephthalamide (PPD-T), a para-aramid. Substantial progress 
has been made in developing new polymer matrices, such as polyetherether-
ketone (PEEK) and polyphenylene sulfide (PPS). These materials have the 
advantages of increased toughness and recyclability. Kevlar-reinforced polymers 
are used in pressure vessels, and Kevlar reinforcement is widely used in tires 
(Figure  1.15). Kevlar was developed in 1965 and has been used commercially 
since the early 1970s. It is especially popular for demanding applications given 
that its strength-to-weight ratio is five times that of structural steel. The modern 
automobile tire is an especially good example.

SILICON CHIPS—INTRODUCING SEMICONDUCTORS
Although polymers are highly visible engineering materials that have had a major 
impact on contemporary society, semiconductors are relatively invisible but have 

FIGURE 1.15  Kevlar reinforcement is a popular application in modern high-performance 
tires. In this case, an automobile is subjected to aquaplaning at a test track. (© Culture-
images GmbH / Alamy.)
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