

Page	i

John	Dean
Park	University

Raymond	Dean
University	of	Kansas

Page	ii

INTRODUCTION	TO	PROGRAMMING	WITH	JAVA

Published	 by	 McGraw	 Hill	 LLC,	 1325	 Avenue	 of	 the	 Americas,	 New	 York,	 NY	 10121.
Copyright	©2021	by	McGraw	Hill	LLC.	All	rights	reserved.	Printed	in	the	United	States	of
America.	No	part	of	this	publication	may	be	reproduced	or	distributed	in	any	form	or	by	any
means,	 or	 stored	 in	 a	 database	 or	 retrieval	 system,	 without	 the	 prior	 written	 consent	 of
McGraw	Hill	LLC,	including,	but	not	limited	to,	in	any	network	or	other	electronic	storage	or
transmission,	or	broadcast	for	distance	learning.

Some	 ancillaries,	 including	 electronic	 and	 print	 components,	 may	 not	 be	 available	 to
customers	outside	the	United	States.

This	book	is	printed	on	acid-free	paper.

1	2	3	4	5	6	7	8	9	LCR	24	23	22	21	20

ISBN	978-1-26057524-8
MHID	1-260-57524-1

Cover	Image:	©Shutterstock/Brian	Lasenby
	
	
	

All	credits	appearing	on	page	or	at	the	end	of	the	book	are	considered	to	be	an	extension	of
the	copyright	page.

The	 Internet	 addresses	 listed	 in	 the	 text	 were	 accurate	 at	 the	 time	 of	 publication.	 The
inclusion	of	a	website	does	not	indicate	an	endorsement	by	the	authors	or	McGraw	Hill	LLC,
and	McGraw	Hill	LLC	does	not	guarantee	the	accuracy	of	the	information	presented	at	these
sites.

mheducation.com/highered

Page	iii

edication
	 —To	Stan	and	Kate

Page	iv

About	the	Authors

John	Dean	 is	 an	 Associate	 Professor	 in	 the	 Computer	 Science	 and	 Information	 Systems
Department	 at	 Park	University.	He	 earned	 a	 Ph.D.	 degree	 in	 computer	 science	 from	Nova
Southeastern	 University	 and	 an	 M.S.	 degree	 in	 computer	 science	 from	 the	 University	 of
Kansas.	He	 is	Java	certified	and	has	worked	in	 industry	as	a	software	engineer	and	project
manager,	specializing	in	Java	and	various	web	technologies—JavaScript,	JavaServer	Pages,
and	 servlets.	 He	 has	 taught	 a	 full	 range	 of	 computer	 science	 courses,	 including	 Java
programming	 and	 Java-based	 web	 programming.	 He	 has	 authored	 a	 web	 programming
textbook	with	a	focus	on	client-side	technologies	HTML5,	CSS,	and	JavaScript.

Raymond	 Dean	 is	 a	 Professor	 Emeritus,	 Electrical	 Engineering	 and	 Computer	 Science,
University	 of	 Kansas.	 He	 earned	 an	 M.S.	 degree	 from	 MIT	 and	 a	 Ph.D.	 degree	 from
Princeton	University.	As	a	professional	engineer	 in	 the	HVAC	industry,	he	wrote	computer
programs	 that	 design	 air	 distribution	 systems	 and	 analyze	 energy	 consumption	 and	 sound
propagation	 in	 buildings.	 At	 the	 University	 of	 Kansas,	 he	 taught	 microprocessor
programming,	 data	 structures,	 and	 other	 courses	 in	 electrical	 engineering	 and	 computer
science.

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

Page	v

Contents

Preface	x

Project	Summary	xxiv

CHAPTER					1

Introduction	to	Computers	and	Programming	1
Introduction	2
Hardware	Terminology	2
Program	Development	10
Source	Code	12
Compiling	Source	Code	into	Object	Code	13
Portability	14
Emergence	of	Java	15
Computer	Ethics	18
First	Program—Hello	World	19
GUI	Track:	Hello	World	(Optional)	24

CHAPTER					2

Algorithms	and	Design	32
Introduction	32
Output	33
Variables	34
Operators	and	Assignment	Statements	35
Input	36
Flow	of	Control	and	Flowcharts	37
if	Statements	38
Loops	43

2.9
2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25

Loop	Termination	Techniques	45
Nested	Looping	48
Tracing	51
Problem	 Solving:	 Other	 Pseudocode	 Formats	 and	 an	 Asset	 Management
Example	55

CHAPTER					3

Java	Basics	65
Introduction	66
“I	Have	a	Dream”	Program	66
Comments	and	Readability	67
The	Class	Heading	69
The	main	Method’s	Heading	69
Braces	70
System.out.println	71
Compilation	and	Execution	73
Identifiers	73
Variables	74
Assignment	Statements	75
Initialization	Statements	77
Numeric	Data	Types—int,	long,	float,	double	78
Constants	80
Arithmetic	Operators	83
Expression	Evaluation	and	Operator	Precedence	86
More	Operators:	Increment,	Decrement,	and	Compound	Assignment	88
Tracing	90
Type	Casting	90
char	Type	and	Escape	Sequences	93
Primitive	Variables	Versus	Reference	Variables	95
Strings	96
Input—the	Scanner	Class	100
Simple	File	Input	for	Repetitive	Testing	During	Program	Development	105
GUI	Track:	Input	and	Output	with	Dialog	Boxes	(Optional)	107

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Page	vi

CHAPTER					4

Control	Statements	119
Introduction	120
Conditions	and	Boolean	Values	120
if	Statements	121
&&	Logical	Operator	124
|	|	Logical	Operator	129
!	Logical	Operator	131
Switching	Constructs	132
while	Loop	138
do	Loop	142
for	Loop	144
Solving	the	Problem	of	Which	Loop	to	Use	149
Nested	Loops	150
boolean	Variables	152
Input	Validation	156
Problem	Solving	with	Boolean	Logic	(Optional)	157

CHAPTER					5

Using	Prebuilt	Methods	170
Introduction	170
The	API	Library	171
Math	Class	177
Wrapper	Classes	for	Primitive	Types	182
Character	Class	186
String	Methods	188
Formatted	Output	with	the	printf>	Method	194
Problem	Solving	with	Random	Numbers	(Optional)	199
GUI	Track:	Covering	an	Image	with	a	Tinted	Pane	(Optional)	203

Interlude	213
Multiple-Method	Programs	in	a	Non-Object-Oriented	Environment	213

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

GUI	 Track:	 Multiple-Method	 Program	 That	 Uses	 StackPane	 and	 Group	 to
Display	Images,	Rectangles,	Lines,	an	Oval,	and	Text	(Optional)	216

CHAPTER					6

Object-Oriented	Programming	222
Introduction	223
Object-Oriented	Programming	Overview	223
First	OOP	Class	227
Driver	Class	230
Calling	Object,	this	Reference	234
Instance	Variables	236
Tracing	an	OOP	Program	237
UML	Class	Diagrams	242
Local	Variables	244
The	return	Statement	247
Argument	Passing	249
Specialized	Methods—Accessors,	Mutators,	and	Boolean	Methods	252
Problem	Solving	with	Simulation	(Optional)	255

CHAPTER					7

Object-Oriented	Programming—	Additional	Details	272
Introduction	273
Object	Creation—A	Detailed	Analysis	273
Assigning	a	Reference	275
Testing	Objects	for	Equality	279
Passing	References	as	Arguments	284
Method-Call	Chaining	286
Overloaded	Methods	289
Constructors	293
Overloaded	Constructors	299
Static	Variables	303
Static	Methods	306
Named	Constants	312

7.13

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

Page	vii

Problem	Solving	with	Multiple	Driven	Classes	314

CHAPTER					8

Software	Engineering	324
Introduction	325
Coding-Style	Conventions	325
Documentation	for	Outsiders	334
Helper	Methods	338
Encapsulation	(with	Instance	Variables	and	Local	Variables)	342
Recognizing	the	User’s	Point	of	View	344
Design	Philosophy	345
Top-Down	Design	350
Bottom-Up	Design	359
Case-Based	Design	361
Iterative	Enhancement	361
Merging	the	Driver	Method	into	the	Driven	Class	363
Accessing	Instance	Variables	Without	Using	this	365
Writing	Your	Own	Utility	Class	366
Problem	Solving	with	the	API	Calendar	Class	(Optional)	368
GUI	Track:	Problem	Solving	with	CRC	Cards	(Optional)	370

CHAPTER					9

Arrays	384
Introduction	385
Array	Basics	385
Array	Declaration	and	Creation	387
Array	length	Property	and	Partially	Filled	Arrays	391
Copying	an	Array	393
Problem	Solving	with	Array	Case	Studies	397
Searching	an	Array	403
Sorting	an	Array	408
Two-Dimensional	Arrays	412
Arrays	of	Objects	418

9.11

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10

For-Each	Loops	425

CHAPTER					10

ArrayLists	and	an	Introduction	to	the	Java	Collections	Framework	435
Introduction	436
The	ArrayList	Class	437
Storing	Primitives	in	an	ArrayList	443
ArrayList	Example	Using	Anonymous	Objects	and	the	For-Each	Loop	446
ArrayLists	Versus	Standard	Arrays	450
The	LinkedList	Class	451
The	List	Interface	452
Problem	Solving:	How	to	Compare	Method	Execution	Times	453
Queues,	Stacks,	and	the	ArrayDeque	Class	457
Overview	of	the	Java	Collections	Framework	464
Collections	Example—Information	Flow	in	a	Network	of	Friends	468
GUI	Track:	Second	Iteration	of	Problem	Solving	with	CRC	Cards	 (Optional)
476

CHAPTER					11

Recursion	489
Introduction	490
Guidelines	for	Writing	a	Recursive	Method	491
A	Recursive	Factorial	Method	492
Comparison	of	Recursive	and	Iterative	Solutions	496
Recursive	Method	Evaluation	Practice	500
Binary	Search	503
Merge	Sort	506
Towers	of	Hanoi	510
Problem	Solving	with	Performance	Analysis	514
GUI	Track:	Drawing	Trees	with	a	Fractal	Algorithm	(Optional)	517

CHAPTER					12

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12

Page	viii

Type	Details	and	Alternative	Coding	Mechanisms	530
Introduction	531
Integer	Types	and	Floating-Point	Types	532
char	Type	and	the	ASCII	Character	Set	536
Type	Conversions	538
Prefix/Postfix	Modes	for	Increment/	Decrement	Operators	541
Embedded	Assignments	544
Conditional	Operator	Expressions	546
Expression	Evaluation	Review	547
Short-Circuit	Evaluation	551
Empty	Statement	552
Using	break	to	Exit	from	a	Loop	554
for	Loop	Header	Details	555
Enumerated	Types	557
forEach	Method,	Lambda	Expressions,	Method	References,	and	Streams	564
Hexadecimal,	Octal,	and	Binary	Numbers	573
GUI	Track:	Unicode	(Optional)	574
Introduction	to	GridWorld	Case	Study	(Optional)	579

CHAPTER					13

Aggregation,	Composition,	and	Inheritance	591
Introduction	592
Composition	and	Aggregation	592
Inheritance	Overview	599
Implementation	of	a	Person/Employee/FullTime	Hierarchy	603
Constructors	in	a	Subclass	605
Method	Overriding	606
Using	the	Person/Employee/FullTime	Hierarchy	609
The	final	Access	Modifier	610
Using	Inheritance	with	Aggregation	and	Composition	610
Design	Practice	with	Card	Game	Example	613
GridWorld	Case	Study	Extensions	(Optional)	619
Problem	Solving	with	Association	Classes	(Optional)	626

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14

CHAPTER					14

Inheritance	and	Polymorphism	637
Introduction	638
The	Object	Class	and	Automatic	Type	Promotion	638
The	equals	Method	639
The	toString	Method	643
Polymorphism	and	Dynamic	Binding	648
Assignments	When	the	Two	Sides’	Classes	Are	Different	653
Polymorphism	with	Arrays	654
abstract	Methods	and	Classes	660
Interfaces	663
The	protected	Access	Modifier	673
GUI	Track:	Three-Dimensional	Graphics	(Optional)	677

CHAPTER					15

Exception	Handling	691
Introduction	692
Overview	of	Exceptions	and	Exception	Messages	692
Using	try	and	catch	Blocks	to	Handle	“Dangerous”	Method	Calls	693
Line	Plot	Example	695
try	Block	Details	699
Two	Categories	of	Exceptions—Checked	and	Unchecked	700
Unchecked	Exceptions	702
Checked	Exceptions	705
Generic	catch	Block	with	Exception	Class	708
Multiple	catch	Blocks	and	Multiple	Exceptions	per	Block	712
Understanding	Exception	Messages	714
Using	a	throws	Clause	to	Postpone	the	catch	718
Automatic	Cleanup	Using	Try-With-Resources	720
GUI	Track:	Line	Plot	Example	Revisited	(Optional)	722

CHAPTER					16

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10
17.11
17.12
17.13
17.14
17.15
17.16

Page	ix

Files,	Buffers,	Channels,	and	Paths	735
Introduction	736
Simple	Text-File	Example:	HTML	File	Generator	737
A	Website	Reader	741
Object	File	I/O	743
Character	Sets	and	File-Access	Options	748
Buffered	Text	File	I/O	749
Primitive	Buffers	with	Random	Access	752
Channel	I/O	and	Memory-Mapped	Files	760
Path,	Whole-File,	and	Directory	Operations	767
Walking	a	Directory	Tree	769
GUI	Track:	Final	Iteration	of	Problem	Solving	with	CRC	Cards	(Optional)	775

CHAPTER					17

GUI	Programming	Basics	787
Introduction	788
SimpleWindow	Program	791
Stage	and	Scene	794
JavaFX	Components	796
Label	Control	797
TextField	Control	799
Greeting	Program	801
Event	Handling	805
Property	Binding	809
JavaFX	CSS	812
Scene	Graph	Inheritance	818
Style	Sheets	and	Cascading	821
Button	Control	and	FactorialButton	Program	826
Distinguishing	Between	Multiple	Events	832
Colors	834
ColorChooser	Program	838

CHAPTER					18

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9
19.10

Appendix	1
Appendix	2
Appendix	3
Appendix	4
Appendix	5
Appendix	6
Appendix	7
Appendix	8

GUI	Programming—Layout	Panes	849
Introduction	849
Layout	Panes	851
FlowPane	and	GridPane—Competing	Layout	Philosophies	853
VBox	Program	with	Two	Stages	and	an	Image	File	858
BorderPane	867
TilePane	and	TextFlow	Containers	872
TicTacToe	Program	878
Embedded	Panes,	HBox,	and	MathCalculator	Program	882
Plain	Pane	Container	and	Component	Positioning	889

CHAPTER					19

GUI	 Programming—Additional	 GUI	 Components,	 Additional	 Event
Handlers,	Animation	896

Introduction	897
User	Interface	Design	897
TextArea	Control	898
CheckBox	and	RadioButton	Controls	903
ComboBox	Control	909
Job	Application	Program	913
ScrollPane	and	Menu	Classes	918
Images	and	Mouse	Events	922
Lunar	Eclipse	Program	with	Circle,	RadialGradient,	and	Slider	928
Animation	933

Appendices
ASCII	Character	Set	943
Operator	Precedence	945
Java	Keywords	and	Other	Reserved	Words	947
Packages	and	Modules	951
Java	Coding-Style	Conventions	963
Javadoc	with	Tags	975
UML	Diagrams	980
Number	Systems	and	Conversions	Between	Them	986

Chapter	S6
Chapter	S9
Chapter	S17
Chapter	S18

Appendix	9

Additional	Online	Material
Writing	Methods	in	a	Non-Object-Oriented	Environment
Arrays	in	a	Non-Object-Oriented	Environment
GUI	Programming	Basics	(with	Swing	and	AWT)
GUI	 Programming—Component	 Layout,	 Additional	 GUI

Components	(with	Swing	and	AWT)
Multithreading

Index	990

•

Page	x

Preface

In	 this	 book,	 we	 lead	 you	 on	 a	 journey	 into	 the	 fun	 and	 exciting	 world	 of	 computer
programming.	 Throughout	 your	 journey,	 we’ll	 provide	 you	 with	 lots	 of	 problem-solving
practice.	After	all,	good	programmers	need	to	be	good	problem	solvers.	We’ll	show	you	how
to	 implement	 your	 problem	 solutions	 with	 Java	 programs.	 We	 provide	 a	 plethora	 of
examples,	some	short	and	focused	on	a	single	concept,	some	longer	and	more	“real	world.”
We	 present	 the	material	 in	 a	 conversational,	 easy-to-follow	manner	 aimed	 at	making	 your
journey	 a	pleasant	 one.	When	you’re	done	with	 the	book,	 you	 should	be	 a	 proficient	 Java
programmer.
Our	 textbook	 targets	 a	wide	 range	of	 readers.	Primarily,	 it	 targets	 students	 in	 a	 standard

college-level	 “Introduction	 to	 Programming”	 course	 or	 course	 sequence	 where	 no
prerequisite	programming	experience	is	assumed.	We	have	included	the	topics	recommended
by	 the	 College	 Board	 for	 high	 school	 students	 studying	 for	 advanced	 placement	 (AP)	 in
computer	science.	So	this	text	should	be	good	for	those	students	as	well.
In	 addition	 to	 targeting	 students	 with	 no	 prerequisite	 programming	 experience,	 our

textbook	 targets	 industry	 practitioners	 and	 college-level	 students	 who	 have	 some
programming	experience	and	want	to	learn	Java.	This	second	set	of	readers	can	skip	the	early
chapters	on	general	programming	concepts	and	focus	on	the	features	of	Java	that	differ	from
the	languages	that	they	already	know.	In	particular,	because	C++	and	Java	are	similar,	readers
with	 a	C++	background	 should	 be	 able	 to	 cover	 the	 textbook	 in	 a	 single	 three-credit-hour
course.	 (But	 we	 should	 reiterate	 for	 those	 of	 you	 with	 no	 programming	 experience:
No	prerequisite	programming	experience	is	required	in	order	to	use	this	text.)
Finally,	 our	 textbook	 targets	 those	 who	 are	 learning	 Java	 on	 their	 own,	 outside	 of	 a

classroom	environment.	This	 third	 set	 of	 readers	 should	 read	 the	 entire	 textbook	 at	 a	 pace
determined	on	a	case-by-case	basis.

What’s	New	in	This	Edition?

The	changes	in	this	edition	are	big	and	small.	Big	changes	include	new	chapters,	reorganized
chapter	sections,	new	programming	constructs,	new	program	examples,	and	new	exercises.
Smaller	changes	include	updating	explanations	and	anecdotes.	We’ve	combed	the	entire	book
for	opportunities	to	improve	the	book’s	clarity	and	readability.	The	following	list	highlights
the	more	significant	changes	that	we’ve	made	to	this	edition.

Introductory	Chapter

To	keep	up	with	 the	 computer	 industry’s	growth,	we’ve	made	quite	 a	 few	changes	 to

•

•

•

•

•

•

•

Page	xi

Chapter	1,	such	as	updating	the	information	in	the	computer	hardware	and	Java	history
sections.
Switching	Constructs

Java	 12	 and	 Java	 13	made	 improvements	 to	 the	 venerable	 switch	 statement,	 and	 this
edition	describes	 those	 improvements.	We	use	 the	new	switching	 techniques	 (multiple
comma-​separated	case	constants	and	no	break	statements)	for	programs	throughout	the
book.	And	we	use	 switch	 statements	versus	 switch	 expressions	 according	 to	what	 the
problem	 calls	 for.	 If	 you’re	 a	 fan	 of	 the	 old-style	 switch	 statement,	 no	 worries,	 we
provide	a	description	early	on	which	will	help	you	with	legacy	code.

Local	Variable	Type	Inferencing

Java	10	 introduced	 the	ability	 to	use	var	 as	 a	 type	 (rather	 than	 int,	double,	 etc.)	 for	 a
local	variable	declaration	where	the	declaration	is	part	of	an	initialization.	We	describe
the	 new	 syntax,	 but	 for	 self-documentation	 reasons,	we	 stick	with	 traditional	 explicit
type	declarations	for	the	most	part.

Name	Change	for	Static	Variables	and	Static	Methods

The	powers	that	be	(the	Oracle	documentation	folks)	now	use	the	terms	static	variable
and	 static	method	 for	what	 used	 to	 be	 known	 as	 class	 variable	 and	 class	method,	 so
we’ve	updated	accordingly.

Miscellaneous	Java	API	Library	Updates

With	the	new	Java	releases	since	the	second	edition,	there	have	been	quite	a	few	updates
to	 the	 Java	 API	 library.	We’ve	 updated	 our	 discussions	 and	 programs	with	 new	API
method	 and	 constructor	 calls	when	 appropriate.	Most	 of	 our	 new	API	 content	 can	 be
found	 in	our	GUI	coverage,	but	 there	are	other	API	changes	 sprinkled	 throughout	 the
book.	 For	 example,	 with	 Java’s	 deprecation	 of	 the	wrapper	 class	 constructors,	 we’ve
refactored	our	programs	to	rely	on	the	wrapper	classes’	valueOf	methods.

New	Section—forEach	Method	and	Streams

We	 introduce	 the	 forEach	method	 as	 a	 simple	 alternative	 to	 the	 for-each	 loop	 in	 the
context	 of	 an	 ArrayList.	We	 then	 use	 the	 forEach	method	 in	 the	 context	 of	 streams,
where	it	really	shines.	We	describe	streams	in	depth,	with	their	exciting	potential	to	take
advantage	of	parallel	processing	to	improve	a	program’s	efficiency.

Lambda	Expressions	and	Method	References

Lambda	expressions	and	method	references	are	techniques	that	allow	you	to	implement
the	functionality	of	a	method	so	you	can	use	it	as	an	argument	in	a	method	call.	We	first
present	lambda	expressions	and	method	references	as	arguments	for	a	forEach	method
call.	Later,	we	use	lambda	expressions	and	method	references	extensively	to	help	with
the	GUI	programs.

Interfaces	with	Static	Methods	and	Default	Methods

•

•

•

•

Page	xii

We’ve	 rewritten	 Chapter	 14’s	 section	 on	 interfaces	 to	 include	 a	 discussion	 of	 static
methods	and	default	methods.	Oracle	added	them	to	interfaces	because	they	support	an
interface’s	ability	to	implement	multiple	inheritance	effectively.

End-of-Chapter	GUI	Sections

We’ve	 rewritten	 all	 of	 our	 end-of-chapter	 GUI	 sections	 to	 take	 advantage	 of	 Java’s
newer	GUI	constructs.

Three	New	Chapters—JavaFX

In	this	book’s	second	edition,	we	used	the	AWT	and	Swing	platforms	for	our	two	GUI
chapters.	 This	 third	 edition	 moves	 those	 chapters	 to	 the	 book’s	 website.	We	 provide
three	new	chapters	in	the	main	body	of	the	book	that	describe	GUI	programming	using
the	 JavaFX	 platform.	 As	 part	 of	 that	 presentation,	 you’ll	 learn	 how	 to	 format	 your
programs	using	JavaFX	CSS	properties.

New	Appendix—Modules

In	Appendix	 4,	 we	 introduce	modules,	 which	 allow	 you	 to	 group	 together	 packages.
Modules	make	it	easier	to	organize	and	share	classes	for	different	programming	needs.
They	are	used	to	facilitate	the	configuration	of	Java	software	for	diverse	hardware	and
software	platforms.

New	Exercises

We	have	substantially	changed	most	of	 the	exercises	and	altered	almost	all	of	 them	in
some	 way.	 As	 before,	 we	 provide	 exercise	 solutions	 on	 the	 password-protected
instructor’s	portion	of	the	book’s	website.

Compliant	 with	 the	 College	 Board’s	 AP	 Computer
Science	A	Curriculum

We	 have	 put	 a	 great	 deal	 of	 effort	 into	 ensuring	 that	 this	 textbook	 is	 compliant	 with	 the
College	 Board’s	 Advanced	 Placement	 (AP)	 Computer	 Science	 A	 curriculum	 content.	 It
follows	 all	 the	 AP	 Computer	 Science	 A	 guidelines.	 As	 such,	 it	 appears	 on	 the	 College
Board’s	 approved	 textbook	 list	 at	 https://apcentral.collegeboard.org/courses/ap-computer-
science-a/course-audit.

Textbook	Cornerstone	#1:	Problem	Solving

Being	able	to	solve	problems	is	a	critical	skill	that	all	programmers	must	possess.	We	teach
programmatic	 problem	 solving	 by	 emphasizing	 two	 of	 its	 key	 elements—algorithm
development	and	program	design.

https://apcentral.collegeboard.org/courses/ap-computer-science-a/course-audit

Page	xiii

Emphasis	on	Algorithm	Development
In	Chapter	2,	we	immerse	readers	into	algorithm	development	by	using	pseudocode	for	the
algorithm	examples	instead	of	Java.	In	using	pseudocode,	students	are	able	to	work	through
nontrivial	problems	on	 their	own	without	getting	bogged	down	in	Java	syntax—no	need	 to
worry	 about	 class	 headings,	 semicolons,	 braces,	 and	 so	 on.1	 Working	 through	 nontrivial
problems	enables	students	to	gain	an	early	appreciation	for	creativity,	logic,	and	organization.
Without	 that	 appreciation,	 Java	 students	 tend	 to	 learn	 Java	 syntax	 with	 a	 rote-memory
attitude.	 But	 with	 that	 appreciation,	 students	 tend	 to	 learn	 Java	 syntax	 more	 quickly	 and
effectively	because	they	have	a	motivational	basis	for	learning	it.	In	addition,	they	are	able	to
handle	nontrivial	Java	homework	assignments	fairly	early	because	they	have	prior	experience
with	similarly	nontrivial	pseudocode	homework	assignments.
In	Chapter	3	and	 in	 later	chapters,	we	 rely	primarily	on	Java	 for	algorithm-development

examples.	But	for	the	more	involved	problems,	we	sometimes	use	high-level	pseudocode	to
describe	 first-cut	 proposed	 solutions.	 Using	 pseudocode	 enables	 readers	 to	 bypass	 syntax
details	and	focus	on	the	algorithm	portion	of	the	solution.

Emphasis	on	Program	Design
Problem	solving	is	more	than	just	developing	an	algorithm.	It	also	involves	figuring	out	the
best	implementation	for	the	algorithm.	That’s	program	design.	Program	design	is	extremely
important,	and	that’s	why	we	spend	so	much	time	on	it.	Frequently,	we	explain	the	thought
processes	that	a	person	might	go	through	when	coming	up	with	a	solution.	For	example,	we
explain	how	to	choose	between	different	loop	types,	how	to	split	up	a	method	into	multiple
methods,	how	 to	decide	on	appropriate	classes,	how	 to	choose	between	 instance	and	static
members,	 and	how	 to	determine	class	 relationships	using	 inheritance	and	composition.	We
challenge	students	to	find	the	most	elegant	implementations	for	a	particular	task.
We	 devote	 a	 whole	 chapter	 to	 program	 design—Chapter	 8,	 “Software

Engineering.”	 In	 that	 chapter,	 we	 provide	 an	 in-depth	 look	 at	 coding-style
conventions	and	documentation	for	programmers	and	users.	We	discuss	design	strategies	like
separation	of	concerns,	modularization,	and	encapsulation.	Also	in	the	chapter,	we	describe
alternative	design	strategies—top-down,	bottom-up,	case-based,	and	iterative	enhancement.

Problem-Solving	Sections
We	 often	 address	 problem	 solving	 (algorithm	 development	 and	 program	 design)	 in	 the
natural	flow	of	explaining	concepts.	But	we	also	cover	problem	solving	in	sections	that	are
wholly	devoted	to	it.	In	each	problem-solving	section,	we	present	a	situation	that	contains	an
unresolved	problem.	In	coming	up	with	a	solution	for	the	problem,	we	try	to	mimic	the	real-
world	problem-solving	experience	by	using	an	iterative	design	strategy.	We	present	a	first-cut
solution,	 analyze	 the	 solution,	 and	 then	 discuss	 possible	 improvements	 to	 it.	 We	 use	 a
conversational	trial-and-error	format	(e.g.,	“What	type	of	layout	manager	should	we	use?	We
first	 tried	 the	 GridLayout	 manager.	 That	 works	 OK,	 but	 not	 great.	 Let’s	 now	 try	 the
BorderLayout	manager.”).	This	casual	tone	sets	the	student	at	ease	by	conveying	the	message

that	 it	 is	 normal,	 and	 in	 fact	 expected,	 that	 a	 programmer	 will	 need	 to	 work	 through	 a
problem	multiple	times	before	finding	the	best	solution.

Additional	Problem-Solving	Mechanisms
We	include	problem-solving	examples	and	problem-solving	advice	throughout	 the	text	(not
just	in	Chapter	2,	Chapter	8,	and	the	problem-solving	sections).	As	a	point	of	emphasis,	we
insert	a	problem-solving	box,	with	an	icon	and	a	succinct	tip,	next	to	the	text	that	contains	the
problem-solving	example	and/or	advice.
We	are	strong	believers	in	learning	by	example.	As	such,	our	textbook	contains	a	multitude

of	complete	program	examples.	Readers	are	encouraged	to	use	our	programs	as	recipes	for
solving	similar	programs	on	their	own.

Textbook	Cornerstone	#2:	Fundamentals	First

Postpone	Concepts	That	Require	Complex	Syntax
We	feel	that	many	introductory	programming	textbooks	jump	too	quickly	into	concepts	that
require	complex	syntax.	In	using	complex	syntax	early,	students	get	in	the	habit	of	entering
code	without	 fully	understanding	 it	or,	worse	yet,	 copying	and	pasting	 from	example	code
without	fully	understanding	the	example	code.	That	can	lead	to	less-than-ideal	programs	and
students	who	are	limited	in	their	ability	to	solve	a	wide	variety	of	problems.	Thus,	we	prefer
to	postpone	concepts	that	require	complex	syntax.	We	prefer	to	introduce	such	concepts	later
on,	when	students	are	better	able	to	understand	them	fully.
As	a	prime	example	of	that	philosophy,	we	cover	the	simpler	forms	of	GUI	programming

early	 (in	 an	 optional	 graphics	 track),	 but	 we	 cover	 the	 more	 complicated	 forms	 of	 GUI
programming	 later	 in	 the	 book.	 Specifically,	we	 postpone	 event-driven	GUI	 programming
until	the	end	of	the	book.	This	is	different	from	some	other	Java	textbooks,	which	favor	early
full	 immersion	 into	 event-driven	 GUI	 programming.	 We	 feel	 that	 strategy	 is	 a	 mistake
because	 proper	 event-driven	 GUI	 programming	 requires	 a	 great	 deal	 of	 programming
maturity.	When	they	learn	it	at	the	end	of	the	book,	our	readers	are	better	able	to	understand
it	fully.

Tracing	Examples
To	write	 code	 effectively,	 it’s	 imperative	 to	understand	 code	 thoroughly.	We’ve	 found	 that
step-by-step	tracing	of	program	code	is	an	effective	way	to	ensure	thorough	understanding.
Thus,	in	the	earlier	parts	of	the	textbook,	when	we	introduce	a	new	programming	structure,
we	often	illustrate	it	with	a	meticulous	trace.	The	detailed	tracing	technique	we	use	illustrates
the	 thought	process	programmers	employ	while	debugging.	 It’s	 a	printed	alternative	 to	 the
sequence	of	screen	displays	generated	by	debuggers	in	integrated	development	environment
(IDE)	software.

•

•

•

•

•

•

•

•

•

•

•

Page	xiv

Input	and	Output
In	the	optional	GUI-track	sections	and	in	the	GUI	chapters	at	the	end	of	the	book,	we
use	 GUI	 commands	 for	 input	 and	 output	 (I/O).	 But	 because	 of	 our	 emphasis	 on
fundamentals,	we	use	console	commands	for	I/O	for	the	rest	of	the	book.2	For	console	input,
we	 use	 the	 Scanner	 class.	 For	 console	 output,	 we	 use	 the	 standard	 System.out.print,
System.out.println,	and	System.out.printf	methods.

Textbook	Cornerstone	#3:	Real	World

More	 often	 than	 not,	 today’s	 classroom	 students	 and	 industry	 practitioners	 prefer	 to	 learn
with	 a	 hands-on,	 real-world	 approach.	 To	meet	 this	 need,	 our	 textbook	 and	 its	 associated
website	include:

compiler	tools

complete	program	examples

practical	guidance	in	program	design

coding-style	guidelines	based	on	industry	standards

Unified	Modeling	Language	(UML)	notation	for	class	relationship	diagrams

practical	homework-project	assignments

Compiler	Tools
We	do	not	tie	the	textbook	to	any	particular	compiler	tool—you	are	free	to	use	any	compiler
tool(s)	that	you	like.	If	you	do	not	have	a	preferred	compiler	in	mind,	then	you	might	want	to
try	out	one	or	more	of	these:

Java	Standard	Edition	Development	Kit	(JDK),	by	Oracle

TextPad,	by	Helios

Eclipse,	by	the	Eclipse	Foundation

Netbeans,	backed	by	Oracle

BlueJ,	by	the	University	of	Kent	and	Deaken	University

To	obtain	 the	above	compilers,	visit	our	 textbook	website	at	http://www.mhhe.com/dean3e,
find	the	appropriate	compiler	link(s),	and	download	away	for	free.

Complete	Program	Examples
In	addition	to	providing	code	fragments	to	illustrate	specific	concepts,	our	textbook	contains
lots	 of	 complete	 program	 examples.	With	 complete	 programs,	 students	 are	 able	 to	 (1)	 see
how	the	analyzed	code	ties	in	with	the	rest	of	a	program,	and	(2)	test	the	code	by	running	it.

http://www.mhhe.com/dean3e

Page	xv

Coding-Style	Conventions
We	include	coding-style	tips	throughout	the	textbook.	The	coding-style	tips	are	based
on	 Oracle’s	 coding	 conventions	 (https://www.oracle.com/technetwork/java/codeconvtoc-
136057.html),	 Google’s	 coding	 conventions
(https://google.github.io/styleguide/javaguide.html),	and	industry	practice.	In	Appendix	5,	we
provide	 a	 complete	 reference	 for	 the	 book’s	 coding-style	 conventions	 and	 an	 associated
example	program	that	illustrates	these	conventions.

UML	Notation
UML	has	become	a	standard	for	describing	the	entities	in	large	software	projects.	Rather	than
overwhelm	 beginning	 programmers	 with	 syntax	 for	 the	 entire	 UML	 (which	 is	 quite
extensive),	 we	 present	 a	 subset	 of	 UML.	 Throughout	 the	 textbook,	 we	 incorporate	 UML
notation	to	represent	classes	and	class	relationships	pictorially.	For	those	interested	in	more
details,	we	provide	additional	UML	notation	in	Appendix	7.

Homework	Problems
We	 provide	 homework	 problems	 that	 are	 illustrative,	 practical,	 and	 clearly	 worded.	 The
problems	 range	 from	 easy	 to	 challenging.	They	 are	 grouped	 into	 three	 categories—review
questions,	exercises,	and	projects.	We	 include	 review	questions	and	exercises	at	 the	end	of
each	chapter,	and	we	provide	projects	on	our	textbook’s	website.
The	review	questions	tend	to	have	short	answers,	and	the	answers	are	in	the	textbook.	The

review	 questions	 use	 these	 formats:	 short-answer,	 multiple-choice,	 true/false,	 fill-in-the-
blank,	 tracing,	 debugging,	 and	write	 a	 code	 fragment.	Each	 review	question	 is	 based	 on	 a
relatively	small	part	of	the	chapter.
The	exercises	 tend	 to	have	short	 to	moderate-length	answers,	and	 the	answers	are	not	 in

the	textbook.	The	exercises	use	these	formats:	short-answer,	tracing,	debugging,	and	write	a
code	fragment.	Exercises	are	keyed	to	the	highest	prerequisite	section	number	in	the	chapter,
but	they	sometimes	integrate	concepts	from	several	parts	of	the	chapter.	For	this	third	edition,
we	have	changed	almost	 all	 of	 the	 end-of-chapter	 exercises,	 including	exercises	 associated
with	unchanged	material	in	the	body	of	the	text.
The	 projects	 consist	 of	 problem	 descriptions	 whose	 solutions	 are	 complete	 programs.

Project	solutions	are	not	 in	 the	 textbook.	Projects	require	students	 to	employ	creativity	and
problem-solving	 skills	 and	 apply	what	 they’ve	 learned	 in	 the	 chapter.	These	projects	often
include	optional	parts,	which	provide	challenges	for	the	more	talented	students.	Projects	are
keyed	 to	 the	 highest	 prerequisite	 section	 number	 in	 the	 chapter,	 but	 they	 often	 integrate
concepts	from	several	preceding	parts	of	the	chapter.	For	this	third	edition,	we	have	modified
old	projects	and	added	new	projects	to	make	all	projects	conform	to	content	in	the	body	of
the	 current	 text.	 Because	 the	 most	 substantial	 body-of-text	 changes	 are	 in	 the	 final	 three
chapters,	most	of	the	project	modifications	and	additions	are	associated	with	these	chapters.
An	 important	 special	 feature	of	 this	book	 is	 the	way	 that	 it	 specifies	problems.	“Sample

sessions”	show	the	precise	output	generated	for	a	particular	set	of	input	values.	These	sample

https://www.oracle.com/technetwork/java/codeconvtoc-136057.html
https://google.github.io/styleguide/javaguide.html

•

•

•

•

•

•

•

•

•

Page	xvi

sessions	 include	 inputs	 that	 represent	 typical	 situations	 and	 sometimes	 also	 extreme	 or
boundary	situations.

Academic-Area	Projects
To	 enhance	 the	 appeal	 of	 projects	 and	 to	 show	 how	 the	 current	 chapter’s	 programming
techniques	might	 apply	 to	 different	 areas	 of	 interest,	we	 take	 project	 content	 from	 several
academic	areas:

computer	science	and	numerical	methods

business	and	accounting

social	sciences	and	statistics

math	and	physics

engineering	and	architecture

biology	and	ecology

Most	 of	 the	 academic-area	 projects	 do	 not	 require	 prerequisite	 knowledge	 in	 a	 particular
area.	Thus,	instructors	are	free	to	assign	almost	any	of	the	projects	to	any	of	their	students.	To
provide	 a	 general	 reader	 with	 enough	 specialized	 knowledge	 to	 work	 a	 problem	 in	 a
particular	 academic	 area,	 we	 sometimes	 expand	 the	 problem	 statement	 to	 explain	 a	 few
special	concepts	in	that	academic	area.
Most	 of	 the	 academic-area	 projects	 do	 not	 require	 students	 to	 have	 completed

projects	 from	 earlier	 chapters;	 that	 is,	 most	 projects	 do	 not	 build	 on	 previous
projects.	 Thus,	 for	 the	 most	 part,	 instructors	 are	 free	 to	 assign	 projects	 without	 worrying
about	prerequisite	projects.	In	some	cases,	a	project	repeats	a	previous	chapter’s	project	with
a	different	approach.	The	teacher	may	elect	to	take	advantage	of	this	repetition	to	dramatize
the	availability	of	alternatives,	but	this	is	not	necessary.
Project	assignments	can	be	tailored	to	fit	readers’	needs.	For	example:

For	readers	outside	of	academia—
Readers	can	choose	projects	that	match	their	interests.

When	a	course	has	students	from	one	academic	area—
Instructors	can	assign	projects	from	the	relevant	academic	area.

When	a	course	has	students	with	diverse	backgrounds—
Instructors	 can	 ask	 students	 to	 choose	 projects	 from	 their	 own	 academic	 areas,	 or
instructors	can	ignore	the	academic-area	delineations	and	simply	assign	projects	that	are
most	appealing.

To	 help	 you	 decide	 which	 projects	 to	 work	 on,	 we’ve	 included	 a	 “Project	 Summary”
section	after	the	preface.	It	lists	all	the	projects	by	chapter	and	section,	and	for	each	project,	it
specifies:

•

•

•

•

Page	xvii

prerequisite	chapter	and	section

academic	area

estimated	difficulty

a	title	and	brief	description

After	using	the	“Project	Summary”	section	to	get	an	idea	of	which	projects	you	might	like	to
work	on,	see	the	textbook’s	website	for	the	full	project	descriptions.

Organization

In	writing	this	book,	we	lead	readers	through	three	important	programming	methodologies:
structured	 programming,	 OOP,	 and	 event-driven	 programming.	 For	 our	 structured
programming	 coverage,	 we	 introduce	 basic	 concepts	 such	 as	 variables	 and	 operators,	 if
statements,	 and	 loops.	 Then	we	 show	 readers	 how	 to	 call	 prebuilt	methods	 from	Oracle’s
Java	API	library.	Many	of	these	methods,	like	those	in	the	Math	class,	are	non-OOP	methods
that	can	be	called	directly.	Others,	like	those	in	the	String	class,	are	OOP	methods	that	must
be	called	by	a	previously	created	object.	After	an	“interlude”	that	gives	readers	a	brief	taste
of	 what	 it’s	 like	 to	 write	 methods	 in	 a	 non-OOP	 environment,	 we	 move	 into	 OOP
programming,	and	introduce	basic	OOP	concepts	such	as	classes,	objects,	instance	variables,
instance	methods,	 and	 constructors.	We	 also	 introduce	 static	 variables	 and	 static	methods,
which	are	useful	in	certain	situations.	However,	we	note	that	they	should	be	used	less	often
than	 instance	 variables	 and	 instance	methods.	 Next,	 we	move	 on	 to	more	 advanced	OOP
concepts—arrays,	 collections,	 interfaces,	 and	 inheritance.	 Chapters	 on	 exception	 handling
and	files	provide	a	transition	into	event-driven	GUI	programming.	We	describe	and	employ
event-driven	GUI	programming	in	the	final	three	chapters.
The	content	and	sequence	we	promote	enable	students	to	develop	their	skills	from

a	solid	 foundation	of	programming	fundamentals.	To	foster	 this	 fundamentals-first
approach,	 our	 book	 starts	 with	 a	 minimum	 set	 of	 concepts	 and	 details.	 It	 then	 gradually
broadens	 concepts	 and	 adds	 detail	 later.	We	 avoid	 overloading	 early	 chapters	 by	 deferring
certain	less-important	details	to	later	chapters.

GUI	Track
Many	programmers	 find	Graphical	User	 Interface	 (GUI)	programming	 to	be	 fun.	As	 such,
GUI	 programming	 can	 be	 a	 great	 motivational	 tool	 for	 keeping	 readers	 interested	 and
engaged.	That’s	why	we	include	graphics	sections	throughout	the	book,	starting	in	Chapter	1.
We	call	those	sections	our	“GUI	track.”	Most	of	these	end-of-chapter	sections	use	GUI	code
that	complements	 the	current	chapter’s	previously	presented	non-GUI	material.	For	 readers
who	do	not	have	 time	for	 the	GUI	track,	no	problem.	Any	or	all	of	 the	GUI	track	sections
may	 be	 skipped	 because	 the	 rest	 of	 the	 book	 does	 not	 depend	 on	 any	 of	 the	 GUI-track
material.
Although	 the	 rest	of	 the	book	does	not	depend	on	 the	GUI-track	material,	be	aware	 that

•

•

•

some	of	the	GUI-track	sections	depend	on	some	of	the	material	in	prior	GUI-track	sections:

Chapter	3’s	GUI	 section	 introduces	dialog	boxes	 for	 user	 input,	 and	dialog	boxes	 are
used	in	later	GUI	sections	for	Chapters	10,	11,	15,	and	16.

Chapters	 8,	 10,	 and	 16	 have	 GUI	 sections	 that	 implement	 a	 common	 program,	 with
iterative	enhancements	in	each	new	GUI	section.

Chapters	12	and	13	have	GUI	sections	 that	 implement	a	common	GridWorld	program
(for	readers	interested	in	the	College	Board’s	AP	Computer	Science	A	curriculum).	The
GridWorld	code	uses	AWT	and	Swing	GUI	software.

Chapter	1
In	Chapter	 1,	we	 first	 explain	 basic	 computer	 terms—what	 are	 the	 hardware	 components,
what	is	source	code,	what	is	object	code,	and	so	on.	We	then	narrow	our	focus	and	describe
the	programming	language	we’ll	be	using	for	the	remainder	of	the	book—Java.	Finally,	we
give	students	a	quick	view	of	the	classic	bare-bones	“Hello	World”	program.	We	explain	how
to	create	and	run	 the	program	using	minimalist	 ​	 software—Microsoft’s	Notepad	 text	editor
and	Oracle’s	command-line	JDK	tools.

Chapter	2
In	 Chapter	 2,	 we	 present	 problem-solving	 techniques	 with	 an	 emphasis	 on	 algorithmic
design.	 In	 implementing	 algorithm	 solutions,	 we	 use	 generic	 tools—flowcharts	 and
pseudocode—with	 pseudocode	 given	 greater	 weight.	 As	 part	 of	 our	 algorithm-design
explanation,	 we	 describe	 structured	 programming	 techniques.	 In	 order	 to	 give	 students	 an
appreciation	for	semantic	details,	we	show	how	to	trace	algorithms.

Chapters	3–5
We	 present	 structured	 programming	 techniques	 using	 Java	 in	 Chapters	 3–5.	 Chapter	 3
describes	 sequential	 programming	 basics—variables,	 input/output,	 assignment	 statements,
and	 simple	method	 calls.	 Chapter	 4	 describes	 nonsequential	 program	 flow—if	 statements,
switch	 constructs,	 and	 loops.	 In	 Chapter	 5,	 we	 explain	 methods	 in	 more	 detail	 and	 show
readers	how	to	use	prebuilt	methods	in	the	Java	API	library.	In	all	 three	chapters,	we	teach
algorithm	design	by	solving	problems	and	writing	programs	with	the	newly	introduced	Java
syntax.

Interlude
This	“mini-chapter”	contains	two	programs	that	show	how	to	write	multiple	methods	without
using	OOP.	The	Interlude	presents	a	fork	in	the	road	between	two	study	sequences.	For	the
standard	study	sequence,	read	the	chapters	in	the	standard	order	(Chapters	1	through	19).	For
the	“objects	later”	study	sequence,	after	reading	Chapter	5,	read	the	supplemental	chapters	S6
and	 S9	 online	 before	 returning	 to	 Chapter	 6,	 where	 you’ll	 begin	 your	 study	 of	 OOP	 in

Page	xviii

earnest.

Chapters	6–7
Chapter	6	introduces	the	basic	elements	of	OOP	in	Java.	This	includes	implementing	classes
and	implementing	methods	and	variables	within	those	classes.	We	use	UML	class	diagrams
and	object-oriented	tracing	techniques	to	illustrate	these	concepts.
Chapter	 7	 provides	 additional	 OOP	 details.	 It	 explains	 how	 reference	 variables	 are

assigned,	 tested	 for	 equality,	 and	 passed	 as	 arguments	 to	 a	method.	 It	 explains	 overloaded
methods	 and	 constructors.	 It	 also	 explains	 the	 use	 of	 static	 variables,	 static	 methods,	 and
different	types	of	named	constants.

Chapter	8
While	 the	 art	 of	 program	 design	 and	 the	 science	 of	 computerized	 problem-solving	 are
developed	throughout	the	textbook,	in	Chapter	8,	we	focus	on	these	aspects	in	the	context	of
OOP.	This	 chapter	begins	with	an	organized	 treatment	of	programming	 style.	 It	 introduces
javadoc,	 the	 Java	 application	 that	 automatically	 generates	 documentation	 for	 user-
programmers.	 It	 describes	 ways	 to	 communicate	 with	 users	 who	 are	 not	 programmers.	 It
describes	organizational	strategies	like	separation	of	concerns,	modularization,	encapsulation,
and	 provision	 of	 general-purpose	 utilities.	 Coded	 examples	 show	 how	 to	 implement	 these
strategies.	 It	 describes	 the	 major	 programming	 paradigms—top-down	 design,	 bottom-up
design,	using	pre-written	software	for	low-level	modules,	and	prototyping.

Chapters	9–10
Chapter	 9	 describes	 arrays,	 including	 arrays	 of	 primitives,	 arrays	 of	 objects,	 and
multidimensional	arrays.	It	illustrates	array	use	with	complete	programs	that	sort,	search,	and
construct	histograms.	Chapter	10	describes	Java’s	powerful	array	alternative,	ArrayList.	This
provides	 a	 simple	 example	 of	 generic-​element	 specification.	 It	 also	 introduces	 the	 Java
Collections	Framework,	which	in	turn,	provides	natural	 illustrations	of	Java	interfaces.	The
prewritten	classes	in	the	Java	Collections	Framework	provide	a	simple	introduction	of	sets,
maps,	and	queues.	A	relatively	short	but	complete	program	shows	how	the	pre-written	Java
implementations	of	these	data	structures	can	be	used	to	create	and	traverse	a	multiconnected
random	network.

Chapter	11
Chapter	 11	 describes	 another	way	 to	 process	 a	 collection	 of	 data—recursion.	This	 chapter
includes	a	 ​discussion	of	various	recursive	strategies.	 It	 introduces	recursion	with	a	 real-life
example	and	a	 familiar	problem	 that	one	can	solve	easily	with	either	 looping	or	 recursion.
Then	it	moves	gradually	 to	problems	that	are	harder	 to	solve	with	 looping	and	more	easily
solved	with	recursion.	Although	this	chapter	appears	after	the	chapter	on	ArrayLists	and	the
Java	 Collections	 Framework,	 it	 does	 not	 depend	 on	 these	 ​concepts—it	 uses	 just	 ordinary
arrays.

•

•

•

•

•

•

•

•

•

•

•

Page	xix

Chapter	12
Early	 on,	 students	 need	 to	 be	 immersed	 in	 problem-solving	 activities.	Covering	 too	much
syntax	detail	early	can	detract	 from	that	objective.	Thus,	we	 initially	gloss	over	some	 less-
important	 syntax	 details	 and	 come	 back	 to	 those	 details	 later	 in	 Chapter	 12.	 This	 chapter
provides	more	details	on	items	such	as	these:

byte	and	short	primitive	types

Unicode	character	set

type	promotions

postfix	versus	prefix	modes	for	the	increment	and	decrement	operators

conditional	operator

short-circuit	evaluation

enum	data	type

forEach	method

lambda	expressions

method	references

streams

The	 chapter	 ends	with	 a	 friendly	 introduction	 to	 a	 relatively	 large	 public-domain	 program
called	 GridWorld,	 which	 the	 College	 Board	 has	 used	 for	 many	 years	 as	 part	 of	 its	 AP
Computer	Science	A	course	of	study.	This	gives	students	a	glimpse	of	how	larger	programs
are	organized.

Chapters	13–14
Chapters	13	and	14	describe	class	relationships	 in	depth	with	numerous	examples.	Chapter
13	 describes	 aggregation,	 composition,	 and	 inheritance.	 Chapter	 14	 describes	 advanced
inheritance-related	details	such	as	 the	Object	class,	polymorphism,	abstract	classes,	and	the
finer	points	of	interfaces.	An	optional	section	at	the	end	of	Chapter	13	describes	an	extension
of	the	GridWorld	environment	introduced	in	Chapter	12	and	provides	additional	exposure	to
Java’s	legacy	AWT	and	Swing	graphics.	Exercises	in	Chapters	13	and	14	relate	material	 in
these	two	chapters	to	corresponding	GridWorld	features.

Chapters	15−16
Chapter	 15	 describes	 exception	 handling,	 and	 Chapter	 16	 describes	 files.	 We	 present
exception	 handling	 before	 files	 because	 file-handling	 code	 requires	 the	 use	 of	 exception
handling.	For	example,	to	open	a	file	one	must	check	for	an	exception.	In	addition	to	simple
text	 I/O,	our	 treatment	of	 files	 includes	buffering,	 random	access,	channeling,	and	memory
mapping.

Page	xx

Chapters	17−19
As	 in	 the	 end-of-chapter	 GUI	 sections,	 Chapters	 17−19	 present	 GUI	 concepts	 using	 the
JavaFX	platform.	But	the	programming	strategies	differ.	What	follows	are	the	strategies	used
in	Chapters	17–19	 (which	are	different	 from	 the	 strategies	used	 in	 the	 end-of-chapter	GUI
sections).	 For	 user	 input,	 the	 programs	 use	 the	 components	 TextField,	 TextArea,	 Button,
RadioButton,	CheckBox,	ComboBox,	ScrollPane,	 and	Menu.	For	 layout,	 the	programs	use
the	containers	FlowPane,	VBox,	HBox,	GridPane,	BorderPane,	TilePane,	and	TextFlow.	For
formatting,	the	programs	use	JavaFX	CSS	properties.
Depending	on	how	much	and	what	kind	of	GUI	techniques	you’re	interested	in,	you	can

study	one	or	more	of	the	end-of-chapter	GUI	sections	or	skip	all	of	them.	That	won’t	affect
your	ability	to	grasp	what’s	in	Chapters	17−19.	If	you’re	short	on	time,	you	can	omit	all	of
the	book’s	GUI	material	without	compromising	your	understanding	of	other	material	 in	the
book.

Chapters	S17−S18
Chapters	S17	and	S18	(the	S’s	stand	for	supplemental)	are	posted	online.	They	describe	the
older	Java	GUI	platforms—AWT	and	Swing.	The	trend	has	been	for	new	Java	programs	to
use	JavaFX,	and	not	AWT	and	Swing.	However,	there’s	quite	a	bit	of	AWT	and	Swing	code
currently	 in	 production,	 and	 that	 means	 there’s	 still	 a	 need	 for	 Java	 programmers	 to
understand	the	older	techniques	so	they	can	update	and	improve	existing	code.	So	if	you	find
yourself	 in	 that	position,	Chapters	S17	and	S18	are	a	good	starting	point	 for	 learning	what
you	need	to	know.

Appendices
Most	 of	 the	 appendices	 cover	 reference	 material,	 like	 the	 ASCII	 character	 set	 and	 the
operator	precedence	table.	For	this	third	edition,	we	have	updated	Appendix	4	by	including	a
detailed	description	of	Java	modules.

Subject-Matter	 Dependencies	 and	 Sequence-Changing
Opportunities

We’ve	 positioned	 the	 textbook’s	 material	 in	 a	 natural	 order	 for	 someone	 who	 wants
fundamentals	and	also	wants	an	early	introduction	to	OOP.	We	feel	that	our	order	is	the	most
efficient	 and	 effective	 one	 for	 learning	 how	 to	 become	 a	 proficient	 OOP	 programmer.
Nonetheless,	we	realize	that	different	readers	have	different	content-ordering	preferences.	To
accommodate	those	different	preferences,	we’ve	provided	some	built-in	flexibility.	Figure	0.1
illustrates	that	flexibility	by	showing	chapter	dependencies	and,	more	importantly,	chapter	 ​-
nondependencies.	 For	 example,	 the	 arrow	 between	 Chapter	 3	 and	 Chapter	 4	 means	 that
Chapter	3	must	be	read	prior	to	Chapter	4.	Because	there	are	no	arrows	going	out	of	Chapters
1,	 11,	 and	 16	 that	 point	 to	 other	 complete	 chapters,	 you	may	 skip	 those	 chapters	without

•

•

•

•

•

•

•

Page	xxi

losing	prerequisite	material	that	later	chapters	need.	We	use	rectangles	with	rounded	corners
to	indicate	chapter	sections	that	you	may	want	to	read	in	advance.	If	you	choose	that	option,
you’ll	want	to	return	to	the	normal	chapter	sequence	after	completing	the	advanced	sections.
Here	are	some	sequence-changing	opportunities	revealed	by	Figure	0.1:

Readers	can	skip	Chapter	1,	“Introduction	to	Computers	and	Programming.”

For	 an	 earlier	 introduction	 to	 OOP,	 readers	 can	 read	 the	 OOP	 overview	 section	 in
Chapter	6	after	reading	Chapter	1.

Readers	can	learn	OOP	syntax	and	semantics	in	Chapter	6	after	finishing	Java	basics	in
Chapter	3.

For	 additional	 looping	 practice,	 readers	 can	 learn	 about	 arrays	 in	 Chapter	 9	 after
finishing	loops	in	Chapter	4.

Readers	can	skip	Chapter	11,	“Recursion,”	and	Chapter	16,	“Files.”

Readers	who	prefer	 a	 late	objects	 approach	can	postpone	 reading	Chapter	6,	“Object-
Oriented	 Programming,”	 by	 first	 reading	 Chapter	 S6,	 “Writing	 Methods	 in	 a	 Non-
Object-Oriented	Environment,”	 Sections	 9.1–9.6	 (which	 explain	 the	 basics	 of	 arrays),
and	Chapter	S9,	“Arrays	in	a	Non-Object-	Oriented	Environment.”

For	GUI	 programming,	 readers	who	 prefer	 the	 Swing	 platform	 should	 read	Chapters
S17	and	S18.

To	support	content-ordering	flexibility,	the	book	contains	“hyperlinks.”	A	hyperlink	is	an
optional	jump	forward	from	one	place	in	the	book	to	another	place.	The	jumps	are	legal	 in
terms	 of	 prerequisite	 knowledge,	 meaning	 that	 the	 jumped-over	 (skipped)	 material	 is
unnecessary	for	an	understanding	of	the	later	material.	We	supply	hyperlinks	for	each	of	the
nonsequential	arrows	in	Figure	0.1.	For	example,	we	supply	hyperlinks	that	go	from	Chapter
1	to	Chapter	6	and	from	Chapter	3	to	Chapter	12.	For	each	hyperlink	tail	end	(in	the	earlier
chapter),	we	tell	the	reader	where	they	may	optionally	jump	to.	For	each	hyperlink	target	end
(in	the	later	chapter),	we	provide	an	icon	at	the	side	of	the	target	text	that	helps	readers	find
the	place	where	they	are	to	begin	reading.

