

Markstedter745303_bindex.indd 451 3/15/2023 10:01:15 AM

Blue Fox

Arm Assembly Internals &
Reverse Engineering

Arm Assembly Internals &
Reverse Engineering

Maria Markstedter

Blue Fox

Copyright © 2023 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBN: 978-1-119-74530-3
ISBN: 978-1-119-74673-7 (ebk)
ISBN: 978-1-119-74672-0 (ebk)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clear-
ance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web
at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at www.wiley.com/go/permission.

Trademarks: WILEY and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permis-
sion. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associ-
ated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness
of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materi-
als. The advice and strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Further, readers should be aware that websites listed in this work may have
changed or disappeared between when this work was written and when it is read. Neither the publisher nor
authors shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Cus-
tomer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993
or fax (317) 572-4002.

If you believe you’ve found a mistake in this book, please bring it to our attention by emailing our Reader
Support team at wileysupport@wiley.com with the subject line “Possible Book Errata Submission.”

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at www
.wiley.com.

Library of Congress Cataloging-in-Publication Data: 2023933796

Cover illustration: © Jonas Jödicke
Cover design: Maria Markstedter and Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
mailto:wileysupport@wiley.com
http://www.wiley.com
http://www.wiley.com

To my mother, who made countless sacrifices to provide me with the
opportunities that enabled me to pursue my dreams.

vii

About the Author

Maria Markstedter is the founder and CEO of Azeria Labs, which provides
training courses on Arm reverse engineering and exploitation. Previously, she
worked in the fields of pentesting and threat intelligence and served as the chief
product officer of the virtualization startup Corellium, Inc.

She has a bachelor’s degree in corporate security and a master’s degree in
enterprise security and worked on exploit mitigation research alongside Arm
in Cambridge.

Maria has been recognized for her contributions to the field, having been
selected for Forbes’ “30 under 30” list for technology in Europe in 2018 and
named Forbes Person of the Year in Cybersecurity in 2020. She has also been
a member of the Black Hat® EU and US Trainings and Briefings Review Board
since 2017.

ix

Acknowledgments

First and foremost, I would like to thank my technical reviewers for spending
endless hours patiently reviewing every chapter.

■■ Daniel Cuthbert, who has always been a great friend, supporter, and the
best mentor I could ask for

■■ Jon Masters, an Arm genius whose technical knowledge has always
inspired me

■■ Maddie Stone, who is a brilliant security researcher and a wonderful
person I look up to

■■ Matthias Boettcher, who patiently served as supervisor for my master’s
thesis at Arm and became a valuable technical reviewer for this book

Thanks to Patrick Wardle for contributing the malware analysis chapter
(Chapter 12, “Reversing arm64 macOS Malware”) to this book.

Thanks to my editors, Jim Minatel and Kelly Talbot, for pushing me to complete
this book during the pandemic and for being so patient with my insufferable
perfectionism.

I would also like to thank Runa Sandvik for being the best friend anyone
could ask for and for giving me strength and support in difficult times.

Most important, I want to thank all the readers for putting their faith in me.

—  Maria Markstedter

xi

Contents at a Glance

Introduction� xxi

Part I	 Arm Assembly Internals� 1

Chapter 1	 Introduction to Reverse Engineering� 3

Chapter 2	 ELF File Format Internals� 21

Chapter 3	 OS Fundamentals� 69

Chapter 4	 The Arm Architecture� 93

Chapter 5	 Data Processing Instructions� 129

Chapter 6	 Memory Access Instructions� 195

Chapter 7	 Conditional Execution� 243

Chapter 8	 Control Flow� 275

Part II	 Reverse Engineering� 305

Chapter 9	 Arm Environments� 307

Chapter 10	 Static Analysis� 321

Chapter 11	 Dynamic Analysis� 363

Chapter 12	 Reversing arm64 macOS Malware� 405

Index� 437

xiii

Contents

Introduction� xxi

Part I	 Arm Assembly Internals� 1

Chapter 1	 Introduction to Reverse Engineering� 3
Introduction to Assembly� 3

Bits and Bytes� 3
Character Encoding� 5
Machine Code and Assembly� 6
Assembling� 9

Cross-Assemblers� 13
High-Level Languages� 15
Disassembling� 16
Decompilation� 17

Chapter 2	 ELF File Format Internals� 21
Program Structure� 21
High-Level vs. Low-Level Languages� 22
The Compilation Process� 24

Cross-Compiling for Other Architectures� 25
Assembling and Linking� 27

The ELF File Overview� 30
The ELF File Header� 31

The ELF File Header Information Fields� 32
The Target Platform Fields� 33
The Entry Point Field� 34
The Table Location Fields� 34

ELF Program Headers� 34
The PHDR Program Header� 36
The INTERP Program Header� 36

The LOAD Program Headers� 36
The DYNAMIC Program Header� 37
The NOTE Program Header� 37
The TLS Program Header� 38
The GNU_EH_FRAME Program Header� 38
The GNU_STACK Program Header� 39
The GNU_RELRO Program Header� 41

ELF Section Headers� 43
The ELF Meta-Sections� 45

The String Table Section� 46
The Symbol Table Section� 46

The Main ELF Sections� 46
The .text Section� 47
The .data Section� 47
The .bss Section� 47
The .rodata Section� 47
The .tdata and .tbss Sections� 48

Symbols� 48
Global vs. Local Symbols� 50
Weak Symbols� 50
Symbol Versions� 51
Mapping Symbols� 51

The Dynamic Section and Dynamic Loading� 52
Dependency Loading (NEEDED)� 53
Program Relocations� 54

Static Relocations� 55
Dynamic Relocations� 56
The Global Offset Table (GOT)� 57
The Procedure Linkage Table (PLT)� 57

The ELF Program Initialization and Termination Sections� 58
Initialization and Termination Order� 60

Thread-Local Storage� 60
The Local-Exec TLS Access Model� 65
The Initial-Exec TLS Access Model� 65
The General-Dynamic TLS Access Model� 66
The Local-Dynamic TLS Access Model� 67

Chapter 3	 OS Fundamentals� 69
OS Architecture Overview� 69

User Mode vs. Kernel Mode� 70
Processes� 70
System Calls� 72

Objects and Handles� 77
Threads� 79

Process Memory Management� 80

xiv	 Contents

	 Contents	 xv

Memory Pages� 82
Memory Protections� 82
Anonymous and Memory-Mapped Memory� 84

Memory-Mapped Files and Modules� 84
Address Space Layout Randomization� 87
Stack Implementations� 90
Shared Memory� 91

Chapter 4	 The Arm Architecture� 93
Architectures and Profiles� 93
The Armv8-A Architecture� 95

Exception Levels� 96
Armv8-A TrustZone Extension� 97
Exception Level Changes� 99

Armv8-A Execution States� 101
The AArch64 Execution State� 102

The A64 Instruction Set� 103
AArch64 Registers� 104

The Program Counter� 106
The Stack Pointer� 107
The Zero Register� 107
The Link Register� 108
The Frame Pointer� 109
The Platform Register (x18)� 109
The Intraprocedural Call Registers� 110
SIMD and Floating-Point Registers� 110
System Registers� 111

PSTATE� 112
The AArch32 Execution State� 114

A32 and T32 Instruction Sets� 114
The A32 Instruction Set� 114
The T32 Instruction Set� 115
Switching Between Instruction Sets� 115

AArch32 Registers� 118
The Program Counter� 119
The Stack Pointer� 120
The Frame Pointer� 120
The Link Register� 121
The Intraprocedural Call Register (IP, r12)� 121

The Current Program Status Register� 121
The Application Program Status Register� 122

The Execution State Registers� 124
The Instruction Set State Register� 124
The IT Block State Register (ITSTATE)� 125

xvi	 Contents

Endianness state� 126
Mode and Exception Mask Bits� 126

Chapter 5	 Data Processing Instructions� 129
Shift and Rotate Operations� 131

Logical Shift Left� 132
Logical Shift Right� 133
Arithmetic Shift Right� 133
Rotate Right� 134
Rotate Right with Extend� 134
Instruction Forms� 135

Shift by a Constant Immediate Form� 136
Shift by Register Form� 138

Bitfield Manipulation Operations� 140
Bitfield Move� 141
Sign- and Zero-Extend Operations� 145
Bitfield Extract and Insert� 150

Logical Operations� 153
Bitwise AND� 153

The TST Instruction� 154
Bitwise Bit Clear� 155

Bitwise OR� 155
Bitwise OR NOT� 156

Bitwise Exclusive OR� 158
The TEQ instruction� 158
Exclusive OR NOT� 159

Arithmetic Operations� 159
Addition and Subtraction� 159

Reverse Subtract� 161
Compare� 162

CMP Instruction Operation Behavior� 163
Multiplication Operations� 165

Multiplications on A64� 166
Multiplications on A32/T32� 167

Least Significant Word Multiplications� 169
Most Significant Word Multiplications� 171
Halfword Multiplications� 173
Vector (Dual) Multiplications� 176
Long (64-Bit) Multiplications� 179

Division Operations� 186
Move Operations� 187

Move Constant Immediate� 188
Move Immediate and MOVT on A32/T32� 188
Move Immediate, MOVZ, and MOVK on A64� 189

Move Register� 190
Move with NOT� 192

	 Contents	 xvii

Chapter 6	 Memory Access Instructions� 195
Instructions Overview� 195
Addressing Modes and Offset Forms� 197

Offset Addressing� 200
Constant Immediate Offset� 201
Register Offsets� 207

Pre-Indexed Mode� 209
Pre-Indexed Mode Example� 210

Post-Indexed Addressing� 212
Post-Indexed Addressing Example� 213

Literal (PC-Relative) Addressing� 214
Loading Constants� 215
Loading an Address into a Register� 218

Load and Store Instructions� 222
Load and Store Word or Doubleword� 222
Load and Store Halfword or Byte� 224

Example Using Load and Store� 226
Load and Store Multiple (A32)� 228

Example for STM and LDM� 235
A More Complicated Example Using STM and LDM� 237

Load and Store Pair (A64)� 238

Chapter 7	 Conditional Execution� 243
Conditional Execution Overview� 243
Conditional Codes� 244

The NZCV Condition Flags� 245
Signed vs. Unsigned Integer Overflows� 246

Condition Codes� 248
Conditional Instructions� 249

The If-Then (IT) Instruction in Thumb� 250
Flag-Setting Instructions� 252

The Instruction “S” Suffix� 253
The S Suffix on Add and Subtract Instructions� 253
The S Suffix on Logical Shift Instructions� 256
The S Suffix on Multiply Instructions� 257
The S Suffix on Other Instructions� 257

Test and Comparison Instructions� 257
Compare (CMP)� 258
Compare Negative (CMN)� 260
Test Bits (TST)� 261
Test Equality (TEQ)� 264

Conditional Select Instructions� 265
Conditional Comparison Instructions� 268

Boolean AND Conditionals Using CCMP� 269
Boolean OR Conditionals Using CCMP� 272

xviii	 Contents

Chapter 8	 Control Flow� 275
Branch Instructions� 275

Conditional Branches and Loops� 277
Test and Compare Branches� 281
Table Branches (T32)� 282
Branch and Exchange� 284
Subroutine Branches� 288

Functions and Subroutines� 290
The Procedure Call Standard� 291
Volatile vs. Nonvolatile Registers� 293
Arguments and Return Values� 293
Passing Larger Values� 295
Leaf and Nonleaf Functions� 298

Leaf Functions� 298
Nonleaf Functions� 299
Prologue and Epilogue� 299

Part II	 Reverse Engineering� 305

Chapter 9	 Arm Environments� 307
Arm Boards� 308
Emulation with QEMU� 310

QEMU User-Mode Emulation� 310
QEMU Full-System Emulation� 314

Firmware Emulation� 315

Chapter 10	 Static Analysis� 321
Static Analysis Tools� 322

Command-Line Tools� 322
Disassemblers and Decompilers� 322
Binary Ninja Cloud� 323

Call-By-Reference Example� 328
Control Flow Analysis� 334

Main Function� 336
Subroutine� 336
Converting to char� 341
if Statement� 343
Quotient Division� 345
for Loop� 347

Analyzing an Algorithm� 349

Chapter 11	 Dynamic Analysis� 363
Command-Line Debugging� 364

GDB Commands� 365
GDB Multiuser� 366
GDB Extension: GEF� 368

Installation� 369
Interface� 370

	 Contents	 xix

Useful GEF Commands� 370
Examine Memory� 374
Watch Memory Regions� 376
Vulnerability Analyzers� 377
checksec� 379

Radare2� 381
Debugging� 382

Remote Debugging� 385
Radare2� 386
IDA Pro� 388

Debugging a Memory Corruption� 390
Debugging a Process with GDB� 398

Chapter 12	 Reversing arm64 macOS Malware� 405
Background� 406

macOS arm64 Binaries� 407
macOS Hello World (arm64)� 410

Hunting for Malicious arm64 Binaries� 413
Analyzing arm64 Malware� 419

Anti-Analysis Techniques� 420
Anti-Debugging Logic (via ptrace)� 421
Anti-Debugging Logic (via sysctl)� 425
Anti-VM Logic (via SIP Status and the Detection

of VM Artifacts)� 429
Conclusion� 435

Index� 437

xxi

Introduction

Let’s address the elephant in the room: why “Blue Fox”?
This book was originally supposed to contain an overview of the Arm

instruction set, chapters on reverse engineering, and chapters on exploit miti-
gation internals and bypass techniques. The publisher and I soon realized that
covering these topics to a satisfactory extent would make this book about 1,000
pages long. For this reason, we decided to split it into two books: Blue Fox and
Red Fox.

The Blue Fox edition covers the analyst view; teaching you everything you
need to know to get started in reverse engineering. Without a solid under-
standing of the fundamentals, you can’t move to more advanced topics such as
vulnerability analysis and exploit development. The Red Fox edition will cover
the offensive security view: understanding exploit mitigation internals, bypass
techniques, and common vulnerability patterns.

As of this writing, the Arm architecture reference manual for the Armv8-A
architecture (and Armv9-A extensions) contains 11,952 pages1 and continues
to expand. This reference manual was around 8,000 pages2 long when I started
writing this book two years ago.

Security researchers who are used to reverse engineering x86/64 binaries but
want to adopt to the new era of Arm-powered devices are having a hard time
finding digestible resources on the Arm instruction set, especially in the context
of reverse engineering or binary analysis. Arm’s architecture reference manual
can be both overwhelming and discouraging. In this day and age, nobody
has time to read a 12,000-page deeply technical document, let alone identify

1 (version I.a.) https://developer.arm.com/documentation/ddi0487/latest
2 (version F.a.) https://developer.arm.com/documentation/ddi0487/latest

xxii	 Introduction

the most relevant or most commonly used instructions and memorize them.
The truth is that you don’t need to know every single Arm instruction to be able
to reverse engineer an Arm binary. Many instructions have very specific use
cases that you may or may not ever encounter during your analysis.

The purpose of this book is to make it easier for people to get familiar with the
Arm instruction set and gain enough knowledge to apply it in their professional
lives. I spent countless hours dissecting the Arm reference manual and cate-
gorizing the most common instruction types and their syntax patterns so you
don’t have to. But this book isn’t a list of the most common Arm instructions.
It contains explanations you won’t find anywhere else, not even in the Arm
manual itself. The basic descriptions of a given instruction in the Arm manual
are rather brief. That is fine for trivial instructions like MOV or ADD. However,
many common instructions perform complex operations that are difficult to
understand from their descriptions alone. For this reason, many of the instruc-
tions you will encounter in this book are accompanied by graphical illustrations
explaining what is actually happening under the hood.

If you’re a beginner in reverse engineering, it is important to understand the
binary’s file format, its sections, how it compiles from source code into machine
code, and the environment it depends on. Because of limited space and time,
this book cannot cover every file format and operating system. It instead focuses
on Linux environments and the ELF file format. The good news is, regardless
of platform or file format, Arm instructions are Arm instructions. Even if you
reverse engineer an Arm binary compiled for macOS or Windows, the meaning
of the instructions themselves remains the same.

This book begins with an introduction explaining what instructions are and
where they come from. In the second chapter, you will learn about the ELF file
format and its sections, along with a basic overview of the compilation process.
Since binary analysis would be incomplete without understanding the con-
text they are executed in, the third chapter provides an overview of operating
system fundamentals.

With this background knowledge, you are well prepared to delve into the
Arm architecture in Chapter 4. You can find the most common data processing
instructions in Chapter 5, followed by an overview of memory access instructions
in Chapter 6. These instructions are a significant part of the Arm architecture,
which is also referred to as a Load/Store architecture. Chapters 7 and 8 dis-
cuss conditional execution and control flow, which are crucial components of
reverse engineering.

Chapter 9 is where it starts to get particularly interesting for reverse engineers.
Knowing the different types of Arm environments is crucial, especially when
you perform dynamic analysis and need to analyze binaries during execution.

With the information provided so far, you are already well equipped for your
next reverse engineering adventure. To get you started, Chapter 10 includes an

	 Introduction	 xxiii

overview of the most common static analysis tools, followed by small practical
static analysis examples you can follow step-by-step.

Reverse engineering would be boring without dynamic analysis to observe
how a program behaves during execution. In Chapter 11, you will learn about
the most common dynamic analysis tools as well as examples of useful com-
mands you can use during your analysis. This chapter concludes with two
practical debugging examples: debugging a memory corruption vulnerability
and debugging a process in GDB.

Reverse engineering is useful for a variety of use cases. You can use your
knowledge of the Arm instruction set and reverse engineering techniques to
expand your skill set into different areas, such as vulnerability analysis or
malware analysis.

Reverse engineering is an invaluable skill for malware analysts, but they also
need to be familiar with the environment a given malware sample was compiled
for. To get you started in this area, this book includes a chapter on analyzing
arm64 macOS malware (Chapter 12) written by Patrick Wardle, who is also the
author of The Art of Mac Malware.3 Unlike previous chapters, this chapter does
not focus on Arm assembly. Instead, it introduces you to common anti-analysis
techniques that macOS malware uses to avoid being analyzed. The purpose of
this chapter is to provide an introduction to macOS malware compatible with
Apple Silicon (M1/M2) so that anyone interested in hunting and analyzing
Arm-based macOS malware can get a head start.

This book took a little over two years to write. I began writing in March
2020, when the pandemic hit and put us all in quarantine. Two years and a
lot of sweat and tears later, I’m happy to finally see it come to life. Thank you
for putting your faith in me. I hope that this book will serve as a useful guide
as you embark on your reverse engineering journey and that it will make the
process smoother and less intimidating.

3 https://taomm.org

Arm Assembly Internals

If you’ve just picked up this book from the shelf, you’re probably interested in
learning how to reverse engineer compiled Arm binaries because major tech
vendors are now embracing the Arm architecture. Perhaps you’re a seasoned
veteran of x86-64 reverse engineering but want to stay ahead of the curve and
learn more about the architecture that is starting to take over the processor
market. Perhaps you’re looking to get started on security analysis to find vul-
nerabilities in Arm-based software or analyze Arm-based malware. Or perhaps
you’re just getting started in reverse engineering and have hit a point where a
deeper level of detail is required to achieve your goal.

Wherever you are on your journey into the Arm-based universe of reverse
engineering, this book is about preparing you, the reader, to understand the
language of Arm binaries, showing you how to analyze them, and, more impor-
tantly, preparing you for the future of Arm devices.

Learning assembly language and how to analyze compiled software is useful in
a wide variety of applications. As with every skill, learning the syntax can seem
difficult and complicated at first, but it eventually becomes easier with practice.

In the first part of this book, we’ll look at the fundamentals of Arm’s main
Cortex-A architecture, specifically the Armv8-A, and the main instructions you’ll
encounter when reverse engineering software compiled for this platform. In the
second part of the book, we’ll look at some common tools and techniques for
reverse engineering. To give you inspiration for different applications of Arm-
based reverse engineering, we will look at practical examples, including how
to analyze malware compiled for Apple’s M1 chip.

Par t

I

C H A P T E R

3

1

Introduction to Assembly

If you’re reading this book, you’ve probably already heard about this thing
called the Arm assembly language and know that understanding it is the key to
analyzing binaries that run on Arm. But what is this language, and why does
it exist? After all, programmers usually write code in high-level languages
such as C/C++, and hardly anyone programs in assembly directly. High-level
languages are, after all, far more convenient for programmers to program in.

Unfortunately, these high-level languages are too complex for processors
to interpret directly. Instead, programmers compile these high-level programs
down into the binary machine code that the processor can run.

This machine code is not quite the same as assembly language. If you were
to look at it directly in a text editor, it would look unintelligible. Processors
also don’t run assembly language; they run only machine code. So, why is it so
important in reverse engineering?

To understand the purpose of assembly, let’s do a quick tour of the history of
computing to see how we got to where we are and how everything connects.

Bits and Bytes
Back in the mists of time when it all started, people decided to create com-
puters and have them perform simple tasks. Computers don’t speak our human

Introduction to Reverse
Engineering

4	 Part I ■ Arm Assembly Internals

languages—they are just electronic devices after all—and so we needed a way
to communicate with them electronically. At the lowest level, computers operate
on electrical signals, and these signals are formed by switching electrical volt-
ages between one of two levels: on and off.

The first problem is that we need a way to describe these “ons” and “offs” for
communication, storage, and simply describing the state of the system. Since
there are two states, it was only natural to use the binary system for encoding
these values. Each binary digit (or bit) could be 0 or 1. Although each bit can
store only the smallest amount of information possible, stringing multiple bits
together allows representation of much larger numbers. For example, the number
30,284,334,537 could be represented in just 35 bits as the following:

11100001101000101100100010111001001

Already this system allows for encoding large numbers, but now we have
a new problem: where does one number in memory (or on a magnetic tape)
end and the next one begin? This is perhaps a strange question to ask modern
readers, but back when computers were first being designed, this was a serious
problem. The simplest solution here would be to create fixed-size groupings
of bits. Computer scientists, never wanting to miss out on a good naming pun,
called this group of binary digits or bits a byte.

So, how many bits should be in a byte? This might seem like a blindingly
obvious question to our modern ears, since we all know that a modern byte is
8 bits. But it was not always so.

Originally, different systems made different choices for how many bits would
be in their bytes. The predecessor of the 8-bit byte we know today is the 6-bit
Binary Coded Decimal Interchange Code (BCDIC) format for representing
alphanumeric information used in early IBM computers, such as the IBM 1620 in
1959. Before that, bytes were often 4 bits long, and before that, a byte stood for
an arbitrary number of bits greater than 1. Only later, with IBM’s 8-bit Extended
Binary Coded Decimal Interchange Code (EBCDIC), introduced in the 1960s in its
mainframe computer product line System/360 and which had byte-addressable
memory with 8-bit bytes, did the byte start to standardize around having 8
bits. This then led to the adoption of the 8-bit storage size in other widely used
computer systems, including the Intel 8080 and Motorola 6800.

The following excerpt is from a book titled Planning a Computer System, pub-
lished 1962, listing three main reasons for adopting the 8-bit byte1:

1. Its full capacity of 256 characters was considered to be sufficient for the great
majority of applications.

1Planning a Computer System, Project Stretch, McGraw-Hill Book Company, Inc., 1962.
(http://archive.computerhistory.org/resources/text/IBM/Stretch/pdfs/
Buchholz_102636426.pdf)

http://archive.computerhistory.org/resources/text/IBM/Stretch/pdfs/Buchholz_102636426.pdf
http://archive.computerhistory.org/resources/text/IBM/Stretch/pdfs/Buchholz_102636426.pdf

	 Chapter 1 ■ Introduction to Reverse Engineering	 5

2. Within the limits of this capacity, a single character is represented by a single
byte, so that the length of any particular record is not dependent on the coincidence
of characters in that record.

3. 8-bit bytes are reasonably economical of storage space.

An 8-bit byte can hold one of 256 uniquely different values from 00000000 to
11111111. The interpretation of those values, of course, depends on the software
using it. For example, we can store positive numbers in those bytes to represent
a positive number from 0 to 255 inclusive. We can also use the two’s complement
scheme to represent signed numbers from –128 to 127 inclusive.

Character Encoding
Of course, computers didn’t just use bytes for encoding and processing integers.
They would also often store and process human-readable letters and numbers,
called characters.

Early character encodings, such as ASCII, had settled on using 7 bits per
byte, but this gave only a limited set of 128 possible characters. This allowed for
encoding English-language letters and digits, as well as a few symbol charac-
ters and control characters, but could not represent many of the letters used in
other languages. The EBCDIC standard, using its 8-bit bytes, chose a different
character set entirely, with code pages for “swapping” to different languages.
But ultimately this character set was too cumbersome and inflexible.

Over time, it became clear that we needed a truly universal character set, sup-
porting all the world’s living languages and special symbols. This culminated in
the creation of the Unicode project in 1987. A few different Unicode encodings
exist, but the dominant encoding used on the Web is UTF-8. Characters within
the ASCII character -set are included verbatim in UTF-8, and “extended char-
acters” can spread out over multiple consecutive bytes.

Since characters are now encoded as bytes, we can represent characters using
two hexadecimal digits. For example, the characters A, R, and M are normally
encoded with the octets shown in Figure 1.1.

Each hexadecimal digit can be encoded with a 4-bit pattern ranging from
0000 to 1111, as shown in Figure 1.2.

Figure 1.1: Letters A, R, and M and their hexadecimal values

6	 Part I ■ Arm Assembly Internals

Since two hexadecimal values are required to encode an ASCII character, 8 bits
seemed like the ideal for storing text in most written languages around the world,
or a multiple of 8 bits for characters that cannot be represented in 8 bits alone.

Using this pattern, we can more easily interpret the meaning of a long string
of bits. The following bit pattern encodes the word Arm:

0100 0001 0101 0010 0100 1101

Machine Code and Assembly
One uniquely powerful aspect of computers, as opposed to the mechanical cal-
culators that predated them, is that they can also encode their logic as data. This
code can also be stored in memory or on disk and be processed or changed on
demand. For example, a software update can completely change the operating
system of a computer without the need to purchase a new machine.

We’ve already seen how numbers and characters are encoded, but how is
this logic encoded? This is where the processor architecture and its instruction
set comes into play.

If we were to create our own computer processor from scratch, we could design
our own instruction encoding, mapping binary patterns to machine codes that
our processor can interpret and respond to, in effect, creating our own “machine
language.” Since machine codes are meant to “instruct” the circuitry to perform
an “operation,” these machine codes are also referred to as instruction codes, or,
more commonly, operation codes (opcodes).

In practice, most people use existing computer processors and therefore use the
instruction encodings defined by the processor manufacturer. On Arm, instruction
encodings have a fixed size and can be either 32-bit or 16-bit, depending on
the instruction set in use by the program. The processor fetches and interprets
each instruction and runs each in turn to perform the logic of the program. Each
instruction is a binary pattern, or instruction encoding, which follows specific
rules defined by the Arm architecture.

By way of example, let’s assume we’re building a tiny 16-bit instruction set
and are defining how each instruction will look. Our first task is to designate
part of the encoding as specifying exactly what type of instruction is to be run,
called the opcode. For example, we might set the first 7 bits of the instruction to
be an opcode and specify the opcodes for addition and subtraction, as shown
in Table 1.1.

Figure 1.2: Hexadecimal ASCII values and their 8-bit binary equivalents

	 Chapter 1 ■ Introduction to Reverse Engineering	 7

Writing machine code by hand is possible but unnecessarily cumbersome.
In practice, we’ll want to write assembly in some human-readable “assembly
language” that will be converted into its machine code equivalent. To do this,
we should also define the shorthand for the instruction, called the instruction
mnemonic, as shown in Table 1.2.

Of course, it’s not sufficient to tell a processor to just do an “addition.” We
also need to tell it what two things to add and what to do with the result. For
example, if we write a program that performs “a = b + c,” the values of b and c
need to be stored somewhere before the instruction begins, and the instruction
needs to know where to write the result a to.

In most processors, and Arm processors in particular, these temporary values
are usually stored in registers, which store a small number of “working” values.
Programs can pull data in from memory (or disk) into registers ready to be
processed and can spill result data back to longer-term storage after processing.

The number and naming conventions of registers are architecture-dependent.
As software has become more and more complex, programs must often juggle
larger numbers of values at the same time. Storing and operating on these
values in registers is faster than doing so in memory directly, which means that
registers reduce the number of times a program needs to access memory and
result in faster execution.

Going back to our earlier example, we were designing a 16-bit instruction to per-
form an operation that adds a value to a register and writes the result into another
register. Since we use 7 bits for the operation (ADD/SUB) itself, the remaining 9 bits
can be used for encoding the source and the destination registers and a constant
value we want to add or subtract. In this example, we split the remaining bits
evenly and assign the shortcuts and respective machine codes shown in Table 1.3.

Table 1.1: Addition and Subtraction Opcodes

OPERATION OPCODE

Addition 0001110

Subtraction 0001111

Table 1.2: Mnemonics

OPERATION OPCODE MNEMONIC

Addition 0001110 ADD

Subtraction 0001111 SUB

8	 Part I ■ Arm Assembly Internals

Instead of generating these machine codes by hand, we could instead write
a little program that converts the syntax ADD R1, R0, #2 (R1 = R0 + 2) into the
corresponding machine-code pattern and hand that machine-code pattern to
our example processor. See Table 1.4.

The bit pattern we constructed represents one of the instruction encodings for
16-bit ADD and SUB instructions that are part of the T32 instruction set. In Figure 1.3
you can see its components and how they are ordered in the instruction encoding.

Of course, this is just a simplified example. Modern processors provide
hundreds of possible instructions, often with more complex subencodings. For
example, Arm defines the load register instruction (with the LDR mnemonic)
that loads a 32-bit value from memory into a register, as illustrated in Figure 1.4.

In this instruction, the “address” to load is specified in register 2 (called R2),
and the read value is written to register 3 (called R3).

Table 1.4: Programming the Machine Codes

INSTRUCTION BINARY MACHINE CODE
HEXADECIMAL
ENCODING

ADD R1, R0, #2 0001110 010 000 001 0x1C81

SUB R1, R0, #2 0001111 010 000 001 0x1E81

Figure 1.3: 16-bit Thumb encoding of ADD and SUB immediate instruction

Table 1.3: Manually Assigning the Machine Codes

OPERATION MNEMONIC MACHINE CODE

Addition ADD 0001110

Subtraction SUB 0001111

Integer value 2 #2 010

Operand register R0 000

Destination register R1 001

	 Chapter 1 ■ Introduction to Reverse Engineering	 9

The syntax of writing brackets around R2 indicates that the value in R2 is to
be interpreted as an address in memory, rather than an ordinary value. In other
words, we do not want to copy the value in R2 into R3, but rather fetch the con-
tents of memory at the address given by R2 and load that value into R3. There are
many reasons for a program to reference a memory location, including calling
a function or loading a value from memory into a register.

This is, in essence, the difference between machine code and assembly code.
Assembly language is the human-readable syntax that shows how each encoded
instruction should be interpreted. Machine code, by contrast, is the actual binary
data ingested and processed by the actual processor, with its encoding specified
precisely by the processor designer.

Assembling
Since processors understand only machine code, and not assembly language,
how do we convert between them? To do this we need a program to convert
our handwritten assembly instructions into their machine-code equivalents.
The programs that perform this task are called assemblers.

In practice, assemblers are capable not only of understanding and translating
individual instructions into machine code but also of interpreting assembler direc-
tives2 that direct the assembler to do other things, such as switch between data
and code or assemble different instruction sets. Therefore, the terms assembly
language and assembler language are just two ways of looking at the same thing.
The syntax and meaning of individual assembler directives and expressions
depend on the specific assembler.

Figure 1.4: LDR instruction loading a value from the address in R2 to register R3

2https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_chapter/as_7
.html

https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_chapter/as_7.html
https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_chapter/as_7.html

