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Introduction

Let’s address the elephant in the room: why “Blue Fox”?
This book was originally supposed to contain an overview of the Arm 

instruction set, chapters on reverse engineering, and chapters on exploit miti-
gation internals and bypass techniques. The publisher and I soon realized that 
covering these topics to a satisfactory extent would make this book about 1,000 
pages long. For this reason, we decided to split it into two books: Blue Fox and 
Red Fox.

The Blue Fox edition covers the analyst view; teaching you everything you 
need to know to get started in reverse engineering. Without a solid under-
standing of the fundamentals, you can’t move to more advanced topics such as 
vulnerability analysis and exploit development. The Red Fox edition will cover 
the offensive security view: understanding exploit mitigation internals, bypass 
techniques, and common vulnerability patterns.

As of this writing, the Arm architecture reference manual for the Armv8-A 
architecture (and Armv9-A extensions) contains 11,952 pages1 and continues 
to expand. This reference manual was around 8,000 pages2 long when I started 
writing this book two years ago.

Security researchers who are used to reverse engineering x86/64 binaries but 
want to adopt to the new era of Arm-powered devices are having a hard time 
finding digestible resources on the Arm instruction set, especially in the context 
of reverse engineering or binary analysis. Arm’s architecture reference manual 
can be both overwhelming and discouraging. In this day and age, nobody 
has time to read a 12,000-page deeply technical document, let alone identify 

1 (version I.a.) https://developer.arm.com/documentation/ddi0487/latest
2 (version F.a.) https://developer.arm.com/documentation/ddi0487/latest
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the most relevant or most commonly used instructions and memorize them.  
The truth is that you don’t need to know every single Arm instruction to be able 
to reverse engineer an Arm binary. Many instructions have very specific use 
cases that you may or may not ever encounter during your analysis.

The purpose of this book is to make it easier for people to get familiar with the 
Arm instruction set and gain enough knowledge to apply it in their professional 
lives. I spent countless hours dissecting the Arm reference manual and cate-
gorizing the most common instruction types and their syntax patterns so you 
don’t have to. But this book isn’t a list of the most common Arm instructions. 
It contains explanations you won’t find anywhere else, not even in the Arm 
manual itself. The basic descriptions of a given instruction in the Arm manual 
are rather brief. That is fine for trivial instructions like MOV or ADD. However, 
many common instructions perform complex operations that are difficult to 
understand from their descriptions alone. For this reason, many of the instruc-
tions you will encounter in this book are accompanied by graphical illustrations 
explaining what is actually happening under the hood.

If you’re a beginner in reverse engineering, it is important to understand the 
binary’s file format, its sections, how it compiles from source code into machine 
code, and the environment it depends on. Because of limited space and time, 
this book cannot cover every file format and operating system. It instead focuses 
on Linux environments and the ELF file format. The good news is, regardless 
of platform or file format, Arm instructions are Arm instructions. Even if you 
reverse engineer an Arm binary compiled for macOS or Windows, the meaning 
of the instructions themselves remains the same.

This book begins with an introduction explaining what instructions are and 
where they come from. In the second chapter, you will learn about the ELF file 
format and its sections, along with a basic overview of the compilation process. 
Since binary analysis would be incomplete without understanding the con-
text they are executed in, the third chapter provides an overview of operating 
system fundamentals.

With this background knowledge, you are well prepared to delve into the 
Arm architecture in Chapter 4. You can find the most common data processing 
instructions in Chapter 5, followed by an overview of memory access instructions 
in Chapter 6. These instructions are a significant part of the Arm architecture, 
which is also referred to as a Load/Store architecture. Chapters 7 and 8 dis-
cuss conditional execution and control flow, which are crucial components of 
reverse engineering.

Chapter 9 is where it starts to get particularly interesting for reverse engineers. 
Knowing the different types of Arm environments is crucial, especially when 
you perform dynamic analysis and need to analyze binaries during execution.

With the information provided so far, you are already well equipped for your 
next reverse engineering adventure. To get you started, Chapter 10 includes an 



	 Introduction	 xxiii

overview of the most common static analysis tools, followed by small practical 
static analysis examples you can follow step-by-step.

Reverse engineering would be boring without dynamic analysis to observe 
how a program behaves during execution. In Chapter 11, you will learn about 
the most common dynamic analysis tools as well as examples of useful com-
mands you can use during your analysis. This chapter concludes with two 
practical debugging examples: debugging a memory corruption vulnerability 
and debugging a process in GDB.

Reverse engineering is useful for a variety of use cases. You can use your 
knowledge of the Arm instruction set and reverse engineering techniques to 
expand your skill set into different areas, such as vulnerability analysis or 
malware analysis.

Reverse engineering is an invaluable skill for malware analysts, but they also 
need to be familiar with the environment a given malware sample was compiled 
for. To get you started in this area, this book includes a chapter on analyzing 
arm64 macOS malware (Chapter 12) written by Patrick Wardle, who is also the 
author of The Art of Mac Malware.3 Unlike previous chapters, this chapter does 
not focus on Arm assembly. Instead, it introduces you to common anti-analysis 
techniques that macOS malware uses to avoid being analyzed. The purpose of 
this chapter is to provide an introduction to macOS malware compatible with 
Apple Silicon (M1/M2) so that anyone interested in hunting and analyzing 
Arm-based macOS malware can get a head start.

This book took a little over two years to write. I began writing in March 
2020, when the pandemic hit and put us all in quarantine. Two years and a 
lot of sweat and tears later, I’m happy to finally see it come to life. Thank you 
for putting your faith in me. I hope that this book will serve as a useful guide 
as you embark on your reverse engineering journey and that it will make the 
process smoother and less intimidating.

3 https://taomm.org
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If you’ve just picked up this book from the shelf, you’re probably interested in 
learning how to reverse engineer compiled Arm binaries because major tech 
vendors are now embracing the Arm architecture. Perhaps you’re a seasoned 
veteran of x86-64 reverse engineering but want to stay ahead of the curve and 
learn more about the architecture that is starting to take over the processor 
market. Perhaps you’re looking to get started on security analysis to find vul-
nerabilities in Arm-based software or analyze Arm-based malware. Or perhaps 
you’re just getting started in reverse engineering and have hit a point where a 
deeper level of detail is required to achieve your goal.

Wherever you are on your journey into the Arm-based universe of reverse 
engineering, this book is about preparing you, the reader, to understand the 
language of Arm binaries, showing you how to analyze them, and, more impor-
tantly, preparing you for the future of Arm devices.

Learning assembly language and how to analyze compiled software is useful in 
a wide variety of applications. As with every skill, learning the syntax can seem 
difficult and complicated at first, but it eventually becomes easier with practice.

In the first part of this book, we’ll look at the fundamentals of Arm’s main 
Cortex-A architecture, specifically the Armv8-A, and the main instructions you’ll 
encounter when reverse engineering software compiled for this platform. In the 
second part of the book, we’ll look at some common tools and techniques for 
reverse engineering. To give you inspiration for different applications of Arm-
based reverse engineering, we will look at practical examples, including how 
to analyze malware compiled for Apple’s M1 chip.

Par t 

I





C H A P T E R

3

1

Introduction to Assembly

If you’re reading this book, you’ve probably already heard about this thing 
called the Arm assembly language and know that understanding it is the key to 
analyzing binaries that run on Arm. But what is this language, and why does 
it exist? After all, programmers usually write code in high-level languages 
such as C/C++, and hardly anyone programs in assembly directly. High-level 
languages are, after all, far more convenient for programmers to program in.

Unfortunately, these high-level languages are too complex for processors 
to interpret directly. Instead, programmers compile these high-level programs 
down into the binary machine code that the processor can run.

This machine code is not quite the same as assembly language. If you were 
to look at it directly in a text editor, it would look unintelligible. Processors 
also don’t run assembly language; they run only machine code. So, why is it so 
important in reverse engineering?

To understand the purpose of assembly, let’s do a quick tour of the history of 
computing to see how we got to where we are and how everything connects.

Bits and Bytes
Back in the mists of time when it all started, people decided to create com-
puters and have them perform simple tasks. Computers don’t speak our human 

Introduction to Reverse 
Engineering
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languages—they are just electronic devices after all—and so we needed a way 
to communicate with them electronically. At the lowest level, computers operate 
on electrical signals, and these signals are formed by switching electrical volt-
ages between one of two levels: on and off.

The first problem is that we need a way to describe these “ons” and “offs” for 
communication, storage, and simply describing the state of the system. Since 
there are two states, it was only natural to use the binary system for encoding 
these values. Each binary digit (or bit) could be 0 or 1. Although each bit can 
store only the smallest amount of information possible, stringing multiple bits 
together allows representation of much larger numbers. For example, the number 
30,284,334,537 could be represented in just 35 bits as the following:

11100001101000101100100010111001001

Already this system allows for encoding large numbers, but now we have 
a new problem: where does one number in memory (or on a magnetic tape) 
end and the next one begin? This is perhaps a strange question to ask modern 
readers, but back when computers were first being designed, this was a serious 
problem. The simplest solution here would be to create fixed-size groupings 
of bits. Computer scientists, never wanting to miss out on a good naming pun, 
called this group of binary digits or bits a byte.

So, how many bits should be in a byte? This might seem like a blindingly 
obvious question to our modern ears, since we all know that a modern byte is 
8 bits. But it was not always so.

Originally, different systems made different choices for how many bits would 
be in their bytes. The predecessor of the 8-bit byte we know today is the 6-bit 
Binary Coded Decimal Interchange Code (BCDIC) format for representing 
alphanumeric information used in early IBM computers, such as the IBM 1620 in 
1959. Before that, bytes were often 4 bits long, and before that, a byte stood for 
an arbitrary number of bits greater than 1. Only later, with IBM’s 8-bit Extended 
Binary Coded Decimal Interchange Code (EBCDIC), introduced in the 1960s in its 
mainframe computer product line System/360 and which had byte-addressable 
memory with 8-bit bytes, did the byte start to standardize around having 8 
bits. This then led to the adoption of the 8-bit storage size in other widely used 
computer systems, including the Intel 8080 and Motorola 6800.

The following excerpt is from a book titled Planning a Computer System, pub-
lished 1962, listing three main reasons for adopting the 8-bit byte1:

1. Its full capacity of 256 characters was considered to be sufficient for the great 
majority of applications.

1Planning a Computer System, Project Stretch, McGraw-Hill Book Company, Inc., 1962. 
(http://archive.computerhistory.org/resources/text/IBM/Stretch/pdfs/
Buchholz_102636426.pdf)

http://archive.computerhistory.org/resources/text/IBM/Stretch/pdfs/Buchholz_102636426.pdf
http://archive.computerhistory.org/resources/text/IBM/Stretch/pdfs/Buchholz_102636426.pdf
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2. Within the limits of this capacity, a single character is represented by a single 
byte, so that the length of any particular record is not dependent on the coincidence 
of characters in that record.

3. 8-bit bytes are reasonably economical of storage space.

An 8-bit byte can hold one of 256 uniquely different values from 00000000 to 
11111111. The interpretation of those values, of course, depends on the software 
using it. For example, we can store positive numbers in those bytes to represent 
a positive number from 0 to 255 inclusive. We can also use the two’s complement 
scheme to represent signed numbers from –128 to 127 inclusive.

Character Encoding
Of course, computers didn’t just use bytes for encoding and processing integers. 
They would also often store and process human-readable letters and numbers, 
called characters.

Early character encodings, such as ASCII, had settled on using 7 bits per 
byte, but this gave only a limited set of 128 possible characters. This allowed for 
encoding English-language letters and digits, as well as a few symbol charac-
ters and control characters, but could not represent many of the letters used in 
other languages. The EBCDIC standard, using its 8-bit bytes, chose a different 
character set entirely, with code pages for “swapping” to different languages. 
But ultimately this character set was too cumbersome and inflexible.

Over time, it became clear that we needed a truly universal character set, sup-
porting all the world’s living languages and special symbols. This culminated in 
the creation of the Unicode project in 1987. A few different Unicode encodings 
exist, but the dominant encoding used on the Web is UTF-8. Characters within 
the ASCII character -set are included verbatim in UTF-8, and “extended char-
acters” can spread out over multiple consecutive bytes.

Since characters are now encoded as bytes, we can represent characters using 
two hexadecimal digits. For example, the characters A, R, and M are normally 
encoded with the octets shown in Figure 1.1.

Each hexadecimal digit can be encoded with a 4-bit pattern ranging from 
0000 to 1111, as shown in Figure 1.2.

Figure 1.1:  Letters A, R, and M and their hexadecimal values
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Since two hexadecimal values are required to encode an ASCII character, 8 bits 
seemed like the ideal for storing text in most written languages around the world, 
or a multiple of 8 bits for characters that cannot be represented in 8 bits alone.

Using this pattern, we can more easily interpret the meaning of a long string 
of bits. The following bit pattern encodes the word Arm:

0100 0001 0101 0010 0100 1101

Machine Code and Assembly
One uniquely powerful aspect of computers, as opposed to the mechanical cal-
culators that predated them, is that they can also encode their logic as data. This 
code can also be stored in memory or on disk and be processed or changed on 
demand. For example, a software update can completely change the operating 
system of a computer without the need to purchase a new machine.

We’ve already seen how numbers and characters are encoded, but how is 
this logic encoded? This is where the processor architecture and its instruction 
set comes into play.

If we were to create our own computer processor from scratch, we could design 
our own instruction encoding, mapping binary patterns to machine codes that 
our processor can interpret and respond to, in effect, creating our own “machine 
language.” Since machine codes are meant to “instruct” the circuitry to perform 
an “operation,” these machine codes are also referred to as instruction codes, or, 
more commonly, operation codes (opcodes).

In practice, most people use existing computer processors and therefore use the 
instruction encodings defined by the processor manufacturer. On Arm, instruction 
encodings have a fixed size and can be either 32-bit or 16-bit, depending on 
the instruction set in use by the program. The processor fetches and interprets 
each instruction and runs each in turn to perform the logic of the program. Each 
instruction is a binary pattern, or instruction encoding, which follows specific 
rules defined by the Arm architecture.

By way of example, let’s assume we’re building a tiny 16-bit instruction set 
and are defining how each instruction will look. Our first task is to designate 
part of the encoding as specifying exactly what type of instruction is to be run, 
called the opcode. For example, we might set the first 7 bits of the instruction to 
be an opcode and specify the opcodes for addition and subtraction, as shown 
in Table 1.1.

Figure 1.2:  Hexadecimal ASCII values and their 8-bit binary equivalents
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Writing machine code by hand is possible but unnecessarily cumbersome. 
In practice, we’ll want to write assembly in some human-readable “assembly 
language” that will be converted into its machine code equivalent. To do this, 
we should also define the shorthand for the instruction, called the instruction 
mnemonic, as shown in Table 1.2.

Of course, it’s not sufficient to tell a processor to just do an “addition.” We 
also need to tell it what two things to add and what to do with the result. For 
example, if we write a program that performs “a = b + c,” the values of b and c 
need to be stored somewhere before the instruction begins, and the instruction 
needs to know where to write the result a to.

In most processors, and Arm processors in particular, these temporary values 
are usually stored in registers, which store a small number of “working” values. 
Programs can pull data in from memory (or disk) into registers ready to be 
processed and can spill result data back to longer-term storage after processing.

The number and naming conventions of registers are architecture-dependent. 
As software has become more and more complex, programs must often juggle 
larger numbers of values at the same time. Storing and operating on these 
values in registers is faster than doing so in memory directly, which means that 
registers reduce the number of times a program needs to access memory and 
result in faster execution.

Going back to our earlier example, we were designing a 16-bit instruction to per-
form an operation that adds a value to a register and writes the result into another 
register. Since we use 7 bits for the operation (ADD/SUB) itself, the remaining 9 bits 
can be used for encoding the source and the destination registers and a constant 
value we want to add or subtract. In this example, we split the remaining bits 
evenly and assign the shortcuts and respective machine codes shown in Table 1.3.

Table 1.1: Addition and Subtraction Opcodes

OPERATION OPCODE

Addition 0001110

Subtraction 0001111

Table 1.2: Mnemonics

OPERATION OPCODE MNEMONIC

Addition 0001110 ADD

Subtraction 0001111 SUB
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Instead of generating these machine codes by hand, we could instead write 
a little program that converts the syntax ADD R1, R0, #2 (R1 = R0 + 2) into the 
corresponding machine-code pattern and hand that machine-code pattern to 
our example processor. See Table 1.4.

The bit pattern we constructed represents one of the instruction encodings for 
16-bit ADD and SUB instructions that are part of the T32 instruction set. In Figure 1.3 
you can see its components and how they are ordered in the instruction encoding.

Of course, this is just a simplified example. Modern processors provide 
hundreds of possible instructions, often with more complex subencodings. For 
example, Arm defines the load register instruction (with the LDR mnemonic) 
that loads a 32-bit value from memory into a register, as illustrated in Figure 1.4.

In this instruction, the “address” to load is specified in register 2 (called R2), 
and the read value is written to register 3 (called R3).

Table 1.4: Programming the Machine Codes

INSTRUCTION BINARY MACHINE CODE
HEXADECIMAL 
ENCODING

ADD R1, R0, #2 0001110 010 000 001 0x1C81

SUB R1, R0, #2 0001111 010 000 001 0x1E81

Figure 1.3:  16-bit Thumb encoding of ADD and SUB immediate instruction

Table 1.3: Manually Assigning the Machine Codes

OPERATION MNEMONIC MACHINE CODE

Addition ADD 0001110

Subtraction SUB 0001111

Integer value 2 #2 010

Operand register R0 000

Destination register R1 001
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The syntax of writing brackets around R2 indicates that the value in R2 is to 
be interpreted as an address in memory, rather than an ordinary value. In other 
words, we do not want to copy the value in R2 into R3, but rather fetch the con-
tents of memory at the address given by R2 and load that value into R3. There are 
many reasons for a program to reference a memory location, including calling 
a function or loading a value from memory into a register.

This is, in essence, the difference between machine code and assembly code. 
Assembly language is the human-readable syntax that shows how each encoded 
instruction should be interpreted. Machine code, by contrast, is the actual binary 
data ingested and processed by the actual processor, with its encoding specified 
precisely by the processor designer.

Assembling
Since processors understand only machine code, and not assembly language, 
how do we convert between them? To do this we need a program to convert 
our handwritten assembly instructions into their machine-code equivalents. 
The programs that perform this task are called assemblers.

In practice, assemblers are capable not only of understanding and translating 
individual instructions into machine code but also of interpreting assembler direc-
tives2 that direct the assembler to do other things, such as switch between data 
and code or assemble different instruction sets. Therefore, the terms assembly 
language and assembler language are just two ways of looking at the same thing. 
The syntax and meaning of individual assembler directives and expressions 
depend on the specific assembler.

Figure 1.4:  LDR instruction loading a value from the address in R2 to register R3

2https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_chapter/as_7 
.html

https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_chapter/as_7.html
https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_chapter/as_7.html



