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Preface to the Instructor

This fifth edition of Physics for Scientists and Engineers: A 
Strategic Approach continues to build on the research-driven 
instructional techniques introduced in the first edition and the 
extensive feedback from thousands of users. From the begin-
ning, the objectives have been:

■■ To produce a textbook that is more focused and coherent, 
less encyclopedic.

■■ To integrate proven results from physics education research 
into the classroom in a way that allows instructors to use a 
range of teaching styles.

■■ To provide a balance of quantitative reasoning and con-
ceptual understanding, with special attention to concepts 
known to cause student difficulties.

■■ To develop students’ problem-solving skills in a systematic 
manner.

A more complete explanation of 
these goals and the rationale behind 
them can be found in the Ready-To-
Go Teaching Modules and in my 
paperback book, Five Easy Lessons: 
Strategies for Successful Physics 
Teaching. Please request a copy 
from your local Pearson sales rep-
resentative if it is of interest to you  
(ISBN 978-0-805-38702-5).

What’s New to This Edition
The fifth edition of Physics for Scientists and Engineers con-
tinues to utilize the best results from educational research and 
to tailor them for this course and its students. At the same time, 
the extensive feedback we’ve received from both instructors 
and students has led to many changes and improvements to 
the text, the figures, and the end-of-chapter problems. Changes 
include:

■■ The Chapter 6 section on drag has been expanded to in-
clude drag in a viscous fluid (Stokes’ law). The Reynolds 
number is introduced as an indicator of whether drag is pri-
marily viscous or primarily inertial.

■■ Chapter 14 on fluids now includes the flow of viscous flu-
ids (Poiseuille’s equation) and a discussion of turbulence.

■■ An optional Advanced Topic section on coupled oscilla-
tions and normal modes has been added to Chapter 15.

■■ Chapter 20 now includes an extensive quantitative section 
on entropy and its application.

■■ A vector review has been added to Chapter 22, the first 
electricity chapter, and the worked examples make extra 

effort to remind students how to work with vectors. 
Returning to vectors after not having used them exten-
sively since mechanics is a stumbling block for many 
students.

■■ The number of applications illustrated with sidebar figures 
has been increased and now includes accelerometers, heli-
copter rotors, quartz oscillators, laser printers, and wireless 
chargers.

■■ There are more than 400 new or significantly revised end-
of-chapter problems. Scores of other problems have been 
edited to improve clarity. Difficulty ratings have been reca-
librated based on Mastering® Physics.

■■ Several substantial new Challenge Problems have been 
added to cover interesting and contemporary topics such as 
gravitational waves, normal modes of the carbon dioxide 
molecule, and Bose-Einstein condensates.

■■ New Ready-To-Go Teaching Modules are an easy-to-use 
online instructor’s guide. These modules provide back-
ground information about topics and techniques that are 
known student stumbling blocks along with suggestions 
and assignments for use before, during, and after class.

Textbook Organization
Physics for Scientists and Engineers is divided into eight parts: 
Part I: Newton’s Laws, Part II: Conservation Laws, Part III: 
Applications of Newtonian Mechanics, Part IV: Oscillations 
and Waves, Part V: Thermodynamics, Part VI: Electricity and 
Magnetism, Part VII: Optics, and Part VIII: Relativity and 
Quantum Mechanics. Note that covering the parts in this or-
der is by no means essential. Each topic is self-contained, and 
Parts III–VII can be rearranged to suit an instructor’s needs. 
Part VII: Optics does need to follow Part IV: Oscillations and 
Waves; optics can be taught either before or after electricity 
and magnetism.

The complete 42-chapter version of Physics for Scien-
tists and Engineers is intended for a three-semester course. A 
two-semester course typically covers 30–32 chapters with the 
judicious omission of a few sections.

There’s a growing sentiment that quantum physics is be-
coming the province of engineers, not just physicists, and 
that even a two-semester course should include a reasonable 
introduction to quantum ideas. The Ready-To-Go Teaching 
Modules outline a couple of routes through the book that 
allow many of the quantum physics chapters to be included 
in a two-semester course. I’ve written the book with the hope 
that an increasing number of instructors will choose one of 
these routes.
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The Student Workbook
A key component of Physics for Scientists and Engineers: A 
Strategic Approach is the accompanying Student Workbook. 
The workbook bridges the gap between textbook and home-
work problems by providing students the opportunity to learn 
and practice skills prior to using those skills in quantitative end-
of-chapter problems, much as a musician practices technique 
separately from performance pieces. The workbook exercises, 
which are keyed to each section of the textbook, focus on  
developing specific skills, ranging from identifying forces and 
drawing free-body diagrams to interpreting wave functions.

The workbook exercises, which are 
generally qualitative and/or graphical, 
draw heavily upon the physics educa-
tion research literature. The exercises 
deal with issues known to cause student 
difficulties and employ techniques that 
have proven to be effective at overcom-
ing those difficulties. The workbook 
exercises can be used in class as part 
of an active-learning teaching strategy, 
in recitation sections, or as assigned 
homework.

Force and Motion . C H A P T E R 5

9.

a. 2m b. 0.5m

Use triangles to show four points for the object of
mass 2m, then draw a line through the points. Use
squares for the object of mass 0.5m.

10. A constant force applied to object A causes A to
accelerate at 5 m/s2. The same force applied to object B
causes an acceleration of 3 m/s2. Applied to object C, it
causes an acceleration of 8 m/s2.

a. Which object has the largest mass? 

b. Which object has the smallest mass? 

c. What is the ratio of mass A to mass B? (mA/mB) = 

11. A constant force applied to an object causes the object to accelerate at 10 m/s2. What will the
acceleration of this object be if

a. The force is doubled? b. The mass is doubled? 

c. The force is doubled and the mass is doubled? 

d. The force is doubled and the mass is halved? 

12. A constant force applied to an object causes the object to accelerate at 8 m/s2. What will the
acceleration of this object be if

a. The force is halved? b. The mass is halved? 

c. The force is halved and the mass is halved? 

d. The force is halved and the mass is doubled? 

13. Forces are shown on two objects. For each:

a. Draw and label the net force vector. Do this right on the figure.
b. Below the figure, draw and label the object’s acceleration vector.
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The figure shows an acceleration-versus-force graph for
an object of mass m. Data have been plotted as individual
points, and a line has been drawn through the points.

Draw and label, directly on the figure, the acceleration-
versus-force graphs for objects of mass

Instructor Resources
A variety of resources are available to help instructors teach 
more effectively and efficiently. These can be downloaded 
from the Instructor Resources area of Mastering® Physics.

■■ Ready-To-Go Teaching Modules are an online instruc-
tor’s guide. Each chapter contains background information 
on what is known from physics education research about 
student misconceptions and difficulties, suggested teaching 
strategies, suggested lecture demonstrations, and suggested 
pre- and post-class assignments.

■■ Mastering® Physics is Pearson’s online homework system 
through which the instructor can assign pre-class reading 
quizzes, tutorials that help students solve a problem with 
hints and wrong-answer feedback, direct-measurement vid-
eos, and end-of-chapter questions and problems. Instructors 
can set up their own assignments or utilize pre-built assign-
ments that have been designed with a balance of problem 
types and difficulties.

■■ PowerPoint Lecture Slides can be modified by the in-
structor but provide an excellent starting point for class 
presentations. The lecture slides include QuickCheck 
questions.

■■ QuickCheck “Clicker Questions” are conceptual ques-
tions, based on known student misconceptions, for in-
class use with some form of personal response system. 

They are designed to be used as part of an active-learning 
teaching strategy. The Ready-To-Go teaching modules 
provide information on the effective use of QuickCheck 
questions.

■■ The Instructor’s Solution Manual is available in both 
Word and PDF formats. We do require that solutions for 
student use be posted only on a secure course website.

■■ All of the textbook figures, key equations, Problem-Solving 
Strategies, Tactics Boxes, and more can be downloaded.

■■ The TestGen Test Bank contains over 2000 conceptual and 
multiple-choice questions. Test files are provided in both 
TestGen® and Word formats.
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Preface to the Student
From Me to You
The most incomprehensible thing about the universe is that it is 
comprehensible.

—Albert Einstein

The day I went into physics class it was death.
—Sylvia Plath, The Bell Jar

Let’s have a little chat before we start. A rather one-sided chat, 
admittedly, because you can’t respond, but that’s OK. I’ve 
talked with many of your fellow students over the years, so I 
have a pretty good idea of what’s on your mind.

What’s your reaction to taking physics? Fear and loathing? 
Uncertainty? Excitement? All the above? Let’s face it, physics 
has a bit of an image problem on campus. You’ve probably 
heard that it’s difficult, maybe impossible unless you’re an 
Einstein. Things that you’ve heard, your experiences in other 
science courses, and many other factors all color your expecta-
tions about what this course is going to be like.

It’s true that there are many new ideas to be learned in phys-
ics and that the course, like college courses in general, is going 
to be much faster paced than science courses you had in high 
school. I think it’s fair to say that it will be an intense course. 
But we can avoid many potential problems and difficulties if 
we can establish, here at the beginning, what this course is 
about and what is expected of you—and of me!

Just what is physics, anyway? Physics is a way of thinking 
about the physical aspects of nature. Physics is not better than 
art or biology or poetry or religion, which are also ways to 
think about nature; it’s simply different. One of the things this 
course will emphasize is that physics is a human endeavor. The 
ideas presented in this book were not found in a cave or con-
veyed to us by aliens; they were discovered and developed by 
real people engaged in a struggle with real issues.

You might be surprised to hear that physics is not about 
“facts.” Oh, not that facts are unimportant, but physics is far 
more focused on discovering relationships and patterns than 
on learning facts for their own sake.

For example, the colors of the 
rainbow appear both when white 
light passes through a prism 
and—as in this photo—when 
white light reflects from a thin 
film of oil on water. What does 
this pattern tell us about the na-
ture of light?

Our emphasis on relation-
ships and patterns means that 
there’s not a lot of memorization 

when you study physics. Some—there are still definitions 
and equations to learn—but less than in many other courses. 
Our emphasis, instead, will be on thinking and reasoning. 
This is important to factor into your expectations for the 
course.

Perhaps most important of all, physics is not math! Physics 
is much broader. We’re going to look for patterns and relation-
ships in nature, develop the logic that relates different ideas, 
and search for the reasons why things happen as they do. In 
doing so, we’re going to stress qualitative reasoning, pictorial 
and graphical reasoning, and reasoning by analogy. And yes, 
we will use math, but it’s just one tool among many.

It will save you much frustration if you’re aware of this 
physics–math distinction up front. Many of you, I know, want 
to find a formula and plug numbers into it—that is, to do a math 
problem. Maybe that worked in high school science courses, 
but it is not what this course expects of you. We’ll certainly do 
many calculations, but the specific numbers are usually the last 
and least important step in the analysis.

As you study, you’ll sometimes be baffled, puzzled, and 
confused. That’s perfectly normal and to be expected. Making 
mistakes is OK too if you’re willing to learn from the expe-
rience. No one is born knowing how to do physics any more 
than he or she is born knowing how to play the piano or shoot 
basketballs. The ability to do physics comes from practice, rep-
etition, and struggling with the ideas until you “own” them and 
can apply them yourself in new situations. There’s no way to 
make learning effortless, at least for anything worth learning, so 
expect to have some difficult moments ahead. But also expect 
to have some moments of excitement at the joy of discovery. 
There will be instants at which the pieces suddenly click into 
place and you know that you understand a powerful idea. There 
will be times when you’ll surprise yourself by successfully  
working a difficult problem that you didn’t think you could 
solve. My hope, as an author, is that the excitement and sense 
of adventure will far outweigh the difficulties and frustrations.

Getting the Most Out of Your Course
Many of you, I suspect, would like to know the “best” way to 
study for this course. There is no best way. People are different 
and what works for one student is less effective for another. But  
I do want to stress that reading the text is vitally important. 
The basic knowledge for this course is written down on these 
pages, and your instructor’s number-one expectation is that 
you will read carefully to find and learn that knowledge.

Despite there being no best way to study, I will suggest one 
way that is successful for many students.

1.	 Read each chapter before it is discussed in class. I can-
not stress too strongly how important this step is. Class at-
tendance is much more effective if you are prepared. When 
you first read a chapter, focus on learning new vocabulary, 
definitions, and notation. There’s a list of terms and nota-
tions at the end of each chapter. Learn them! You won’t un-
derstand what’s being discussed or how the ideas are being 
used if you don’t know what the terms and symbols mean.
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2.	 Participate actively in class. Take notes, ask and  
answer questions, and participate in discussion groups. 
There is ample scientific evidence that active partici-
pation is much more effective for learning science than 
passive listening.

3.	 After class, go back for a careful re-reading of the 
chapter. In your second reading, pay closer attention 
to the details and the worked examples. Look for the 
logic behind each example (I’ve highlighted this to 
make it clear), not just at what formula is being used. 
And use the textbook tools that are designed to help 
your learning, such as the problem-solving strategies, 
the chapter summaries, and the exercises in the Student 
Workbook.

4.	 Finally, apply what you have learned to the home-
work problems at the end of each chapter. I strongly 
encourage you to form a study group with two or three 
classmates. There’s good evidence that students who 
study regularly with a group do better than the rugged 
individualists who try to go it alone.

Did someone mention a workbook? The companion Student 
Workbook is a vital part of the course. Its questions and exercises  
ask you to reason qualitatively, to use graphical informa-
tion, and to give explanations. It is through these exercises 
that you will learn what the concepts mean and will practice 
the reasoning skills appropriate to the chapter. You will then 
have acquired the baseline knowledge and confidence you 
need before turning to the end-of-chapter homework prob-
lems. In sports or in music, you would never think of per-
forming before you practice, so why would you want to do 
so in physics? The workbook is where you practice and work 
on basic skills.

Many of you, I know, will be tempted to go straight to the 
homework problems and then thumb through the text looking 
for a formula that seems like it will work. That approach will 
not succeed in this course, and it’s guaranteed to make you 
frustrated and discouraged. Very few homework problems are 
of the “plug and chug” variety where you simply put numbers 
into a formula. To work the homework problems successfully, 
you need a better study strategy—either the one outlined above 
or your own—that helps you learn the concepts and the rela-
tionships between the ideas.

Getting the Most Out of Your Textbook
Your textbook provides many features designed to help you learn 
the concepts of physics and solve problems more effectively.

■■ TACTICS BOXES give step-by-step procedures for particular 
skills, such as interpreting graphs or drawing special dia-
grams. Tactics Box steps are explicitly illustrated in sub-
sequent worked examples, and these are often the starting 
point of a full Problem-Solving Strategy.

■■ PROBLEM-SOLVING STRATEGIES are provided for each broad 
class of problems—problems characteristic of a chapter or 
group of chapters. The strategies follow a consistent four-
step approach to help you develop confidence and proficient 
problem-solving skills: MODEL, VISUALIZE, SOLVE, REVIEW.

■■ Worked EXAMPLES illustrate good problem-solving 
practices through the consistent use of the four-step 
problem-solving approach The worked examples are 
often very detailed and carefully lead you through the 
reasoning behind the solution as well as the numerical 
calculations.

■■ STOP TO THINK questions embedded in the chapter allow you 
to quickly assess whether you’ve understood the main idea 
of a section. A correct answer will give you confidence to 
move on to the next section. An incorrect answer will alert 
you to re-read the previous section.

■■ Blue annotations on figures 
help you better understand 
what the figure is show-
ing. They will help you to 
interpret graphs; translate 
between graphs, math, and 
pictures; grasp difficult 
concepts through a visual 
analogy; and develop many 
other important skills.

■■ Schematic Chapter Summaries help you organize what you 
have learned into a hierarchy, from general principles (top) 
to applications (bottom). Side-by-side pictorial, graphical, 
textual, and mathematical representations are used to help 
you translate between these key representations.

■■ Each part of the book ends with a KNOWLEDGE STRUCTURE 
designed to help you see the forest rather than just the trees.

Now that you know more about what is expected of you, 
what can you expect of me? That’s a little trickier because the 
book is already written! Nonetheless, the book was prepared 
on the basis of what I think my students throughout the years 
have expected—and wanted—from their physics textbook. 
Further, I’ve listened to the extensive feedback I have received 
from thousands of students like you, and their instructors, who 
used the first four editions of this book.

You should know that these course materials—the text 
and the workbook—are based on extensive research about 
how students learn physics and the challenges they face. The 
effectiveness of many of the exercises has been demonstrated 
through extensive class testing. I’ve written the book in an in-
formal style that I hope you will find appealing and that will 
encourage you to do the reading. And, finally, I have endeav-
ored to make clear not only that physics, as a technical body of 
knowledge, is relevant to your profession but also that physics 
is an exciting adventure of the human mind.

I hope you’ll enjoy the time we’re going to spend together.

I

The current in a wire is
the same at all points.

I = constant
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Useful Data

Me Mass of the earth 5.97 * 1024 kg
Re Radius of the earth 6.37 * 106 m
g Free-fall acceleration on earth 9.80 m/s2

G Gravitational constant 6.67 * 10-11 N m2/kg2

kB Boltzmann’s constant 1.38 * 10-23 J/K
R Gas constant 8.31 J/mol K
NA Avogadro’s number 6.02 * 1023 particles/mol
T0 Absolute zero -273°C
s Stefan-Boltzmann constant 5.67 * 10-8 W/m2 K4

patm Standard atmosphere 101,300 Pa
vsound Speed of sound in air at 20°C 343 m/s
mp Mass of the proton (and the neutron) 1.67 * 10-27 kg
me Mass of the electron 9.11 * 10-31 kg
K Coulomb’s law constant (1/4pP0) 8.99 * 109 N m2/C2

P0 Permittivity constant 8.85 * 10-12 C2/N m2

m0 Permeability constant 1.26 * 10-6 T m/A
e Fundamental unit of charge 1.60 * 10-19 C
c Speed of light in vacuum 3.00 * 108 m/s
h Planck’s constant 6.63 * 10-34 J s 4.14 * 10-15 e V s
U Planck’s constant 1.05 * 10-34 J s 6.58 * 10-16 e V s
aB Bohr radius 5.29 * 10-11 m

Common Prefixes

Prefix Meaning

femto- 10-15

pico- 10-12

nano- 10-9

micro- 10-6

milli- 10-3

centi- 10-2

kilo- 103

mega- 106

giga- 109

terra- 1012

Conversion Factors

Length
1 in = 2.54 cm
1 mi = 1.609 km
1 m = 39.37 in
1 km = 0.621 mi

Velocity
1 mph = 0.447 m/s
1 m/s = 2.24 mph = 3.28 ft/s

Mass and energy
1 u = 1.661 * 10-27 kg
1 cal = 4.19 J
1 eV = 1.60 * 10-19 J

Time
1 day = 86,400 s
1 year = 3.16 * 107 s

Pressure
1 atm = 101.3 kPa = 760 mm of Hg
1 atm = 14.7 lb/in2

Rotation
1 rad = 180°/p = 57.3°
1 rev = 360° = 2p rad
1 rev/s = 60 rpm

Mathematical Approximations

Binomial approximation:  (1 + x)n ≈ 1 + nx if x V 1
Small-angle approximation:  sin u ≈ tan u ≈ u and cos u ≈ 1 if u V 1 radian

Greek Letters Used in Physics

Alpha a Mu m

Beta b Pi p

Gamma Γ g Rho r

Delta ∆ d Sigma g s

Epsilon P Tau t

Eta h Phi Φ f

Theta ϴ u Psi c

Lambda l Omega Ω v
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Motion can be slow and steady, or fast and sudden. 
This rocket, with its rapid acceleration, is responding to 
forces exerted on it by thrust, gravity, and the air.

OVERVIEW

Why Things Move
Each of the seven parts of this book opens with an overview to give you a look 
ahead, a glimpse at where your journey will take you in the next few chapters. 
It’s easy to lose sight of the big picture while you’re busy negotiating the terrain 
of each chapter. In addition, each part closes with a Knowledge Structure to help 
you consolidate your knowledge. You might want to look ahead now to the Part I 
Knowledge Structure on page 230. 

In Part I, the big picture, in a word, is motion.

■■ How do we describe motion? It is easy to say that an object moves, but it’s 
not obvious how we should measure or characterize the motion if we want to 
analyze it mathematically. The mathematical description of motion is called 
kinematics, and it is the subject matter of Chapters 1 through 4.

■■ How do we explain motion? Why do objects have the particular motion they 
do? Why, when you toss a ball upward, does it go up and then come back 
down rather than keep going up? What “laws of nature” allow us to predict 
an object’s motion? The explanation of motion in terms of its causes is called 
dynamics, and it is the topic of Chapters 5 through 8.

Two key ideas for answering these questions are force (the “cause”) and accel-
eration (the “effect”). A variety of pictorial and graphical tools will be developed 
in Chapters 1 through 5 to help you develop an intuition for the connection be-
tween force and acceleration. You’ll then put this knowledge to use in Chapters 5 
through 8 as you analyze motion of increasing complexity.

Another important tool will be the use of models. Reality is extremely com-
plicated. We would never be able to develop a science if we had to keep track 
of every little detail of every situation. A model is a simplified description of 
reality—much as a model airplane is a simplified version of a real airplane—used 
to reduce the complexity of a problem to the point where it can be analyzed and 
understood. We will introduce several important models of motion, paying close 
attention, especially in these earlier chapters, to where simplifying assumptions 
are being made, and why.

The laws of motion were discovered by Isaac Newton roughly 350 years ago, 
so the study of motion is hardly cutting-edge science. Nonetheless, it is still ex-
tremely important. Mechanics—the science of motion—is the basis for much of 
engineering and applied science, and many of the ideas introduced here will be 
needed later to understand things like the motion of waves and the motion of 
electrons through circuits. Newton’s mechanics is the foundation of much of con-
temporary science, thus we will start at the beginning.

Newton’s Laws
PA R T

I
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Concepts of Motion

What is a chapter preview?
Each chapter starts with an overview. Think of it as a roadmap 
to help you get oriented and make the most of your studying.
❮❮ LOOKING BACK A Looking Back reference tells you what material from 
previous chapters is especially important for understanding the new 
topics. A quick review will help your learning. You will find additional 
Looking Back references within the chapter, right at the point they’re 
needed.

What is motion?
Before solving motion problems, we must 
learn to describe motion. We will use

■■ Motion diagrams
■■ Graphs
■■ Pictures

Motion concepts introduced in this 
chapter include position, velocity, and 
acceleration.

Why do we need vectors?
Many of the quantities used to describe 
motion, such as velocity, have both a size 
and a direction. We use vectors to represent 
these quantities. This chapter introduces 
graphical techniques to add and subtract 
vectors. Chapter 3 will explore vectors in 
more detail.

Why are units and significant  
figures important?
Scientists and engineers must commu-
nicate their ideas to others. To do so, we 
have to agree about the units in which 
quantities are measured. In physics we 
use metric units, called SI units. We also  
need rules for telling others how accurately  
a quantity is known. You will learn the rules  
for using significant figures correctly.

Why is motion important?
The universe is in motion, from the smallest scale of 
electrons and atoms to the largest scale of entire  
galaxies. We’ll start with the motion of everyday objects,  
such as cars and balls and people. Later we’ll study  
the motions of waves, of atoms in gases, and of electrons  
in circuits. Motion is the one theme that will be with us  
from the first chapter to the last.

IN THIS CHAPTER, you will learn the fundamental concepts of motion.

1

Motion takes many 
forms. The cyclists seen 
here are an example of 
translational motion.

a
u

v
u

x0 = v0x = t0 = 0

ax

x1

x
x0

Known

ax = 2.0 m/s2

Find
x1

A
u

A + B
u u

B
u

0.00620 = 6.20 * 10-3
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1.1  Motion Diagrams  25

1.1  Motion Diagrams
Motion is a theme that will appear in one form or another throughout this entire 
book. Although we all have intuition about motion, based on our experiences, some 
of the important aspects of motion turn out to be rather subtle. So rather than jumping 
immediately into a lot of mathematics and calculations, this first chapter focuses on 
visualizing motion and becoming familiar with the concepts needed to describe a 
moving object. Our goal is to lay the foundations for understanding motion.

Linear motion Circular motion Projectile motion Rotational motion

FIGURE 1.1  Four basic types of motion.

To begin, let’s define motion as the change of an object’s position with time. 
FIGURE 1.1 shows four basic types of motion that we will study in this book. The first 
three—linear, circular, and projectile motion—in which the object moves through 
space are called translational motion. The path along which the object moves, 
whether straight or curved, is called the object’s trajectory. Rotational motion 
is somewhat different because there’s movement but the object as a whole doesn’t 
change position. We’ll defer rotational motion until later and, for now, focus on 
translational motion.

Making a Motion Diagram
An easy way to study motion is to make a video of a moving object. A video camera, 
as you probably know, takes images at a fixed rate, typically 30 every second. Each 
separate image is called a frame. As an example, FIGURE 1.2 shows four frames from a 
video of a car going past. Not surprisingly, the car is in a somewhat different position 
in each frame.

Suppose we edit the video by layering the frames on top of each other, creating 
the composite image shown in FIGURE 1.3. This edited image, showing an object’s 
position at several equally spaced instants of time, is called a motion diagram. As 
the examples below show, we can define concepts such as constant speed, speeding 
up, and slowing down in terms of how an object appears in a motion diagram.

   NOTE     It’s important to keep the camera in a fixed position as the object moves by. 
Don’t “pan” it to track the moving object.

Examples of motion diagrams

Images that are equally spaced indicate an 
object moving with constant speed.

An increasing distance between the images 
shows that the object is speeding up.

A decreasing distance between the images 
shows that the object is slowing down.

FIGURE 1.2  Four frames from a video.

The same amount of time elapses
between each image and the next.

FIGURE 1.3  A motion diagram of the car 
shows all the frames simultaneously.
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26  CHAPTER 1 Concepts of Motion

   NOTE     Each chapter will have several Stop to Think questions. These questions are 
designed to see if you’ve understood the basic ideas that have been presented. The 
answers are given at the end of the book, but you should make a serious effort to 
think about these questions before turning to the answers.

1.2  Models and Modeling
The real world is messy and complicated. Our goal in physics is to brush aside many of 
the real-world details in order to discern patterns that occur over and over. For example, 
a swinging pendulum, a vibrating guitar string, a sound wave, and jiggling atoms in a 
crystal are all very different—yet perhaps not so different. Each is an example of a 
system moving back and forth around an equilibrium position. If we focus on under-
standing a very simple oscillating system, such as a mass on a spring, we’ll automati-
cally understand quite a bit about the many real-world manifestations of oscillations.

Stripping away the details to focus on essential features is a process called 
modeling. A model is a highly simplified picture of reality, but one that still captures 
the essence of what we want to study. Thus “mass on a spring” is a simple but realistic 
model of almost all oscillating systems.

Models allow us to make sense of complex situations by providing a framework for 
thinking about them. One could go so far as to say that developing and testing models 
is at the heart of the scientific process. Albert Einstein once said, “Physics should 
be as simple as possible—but not simpler.” We want to find the simplest model that 
allows us to understand the phenomenon we’re studying, but we can’t make the model 
so simple that key aspects of the phenomenon get lost.

We’ll develop and use many models throughout this textbook; they’ll be one of our 
most important thinking tools. These models will be of two types:

■■ Descriptive models: What are the essential characteristics and properties of a 
phenomenon? How do we describe it in the simplest possible terms? For example, 
the mass-on-a-spring model of an oscillating system is a descriptive model.

■■ Explanatory models: Why do things happen as they do? Explanatory models, based 
on the laws of physics, have predictive power, allowing us to test—against experi-
mental data—whether a model provides an adequate explanation of our observations.

The Particle Model
For many types of motion, such as that of balls, cars, and rockets, the motion of the 
object as a whole is not influenced by the details of the object’s size and shape. All we 
really need to keep track of is the motion of a single point on the object, so we can treat 
the object as if all its mass were concentrated into this single point. An object that can 
be represented as a mass at a single point in space is called a particle. A particle has  
no size, no shape, and no distinction between top and bottom or between front and back.

If we model an object as a particle, we can represent the object in each frame of a  
motion diagram as a simple dot rather than having to draw a full picture. FIGURE 1.4 
shows how much simpler motion diagrams appear when the object is represented as 
a particle. Note that the dots have been numbered 0, 1, 2, . . . to tell the sequence in 
which the frames were taken.

0
1

2

3

(a) Motion diagram of a rocket launch

(b) Motion diagram of a car stopping

Numbers show
the order in
which the frames
were taken.

4

0

The same amount of time elapses
between each image and the next.

1 2 3 4

FIGURE 1.4  Motion diagrams in which the 
object is modeled as a particle.

We can model an airplane’s takeoff as a 
particle (a descriptive model) undergoing 
constant acceleration (a descriptive 
model) in response to constant forces 
(an explanatory model).

STOP TO THINK 1.1  Which car is going faster, A or B? Assume there are equal intervals of time between 
the frames of both videos.

Car A Car B

M01B_KNIG8221_05_GE_C01.indd   26 02/06/2022   15:50



1.3  Position, Time, and Displacement  27

Treating an object as a particle is, of course, a simplification of reality—but that’s 
what modeling is all about. The particle model of motion is a simplification in which 
we treat a moving object as if all of its mass were concentrated at a single point. The 
particle model is an excellent approximation of reality for the translational motion of 
cars, planes, rockets, and similar objects.

Of course, not everything can be modeled as a particle; models have their limits. 
Consider, for example, a rotating gear. The center doesn’t move at all while each tooth is 
moving in a different direction. We’ll need to develop new models when we get to new 
types of motion, but the particle model will serve us well throughout Part I of this book.

STOP TO THINK 1.2  Three motion diagrams 
are shown. Which is a dust particle settling to the 
floor at constant speed, which is a ball dropped 
from the roof of a building, and which is a 
descending rocket slowing to make a soft landing  
on Mars?

(a) (c) 0

1

2

3

4
5

0
1

2

3

4

5

(b) 0

1

2

3

4

5

1.3  Position, Time, and Displacement
To use a motion diagram, you would like to know where the object is (i.e., its position) 
and when the object was at that position (i.e., the time). Position measurements can  
be made by laying a coordinate-system grid over a motion diagram. You can then 
measure the 1x, y2 coordinates of each point in the motion diagram. Of course, the 
world does not come with a coordinate system attached. A coordinate system is an 
artificial grid that you place over a problem in order to analyze the motion. You place 
the origin of your coordinate system wherever you wish, and different observers of a 
moving object might all choose to use different origins.

Time, in a sense, is also a coordinate system, although you may never have thought 
of time this way. You can pick an arbitrary point in the motion and label it ;t = 0 
seconds.” This is simply the instant you decide to start your clock or stopwatch, so 
it is the origin of your time coordinate. Different observers might choose to start 
their clocks at different moments. A video frame labeled ;t = 4 seconds” was taken 
4 seconds after you started your clock.

We typically choose t = 0 to represent the “beginning” of a problem, but the object 
may have been moving before then. Those earlier instants would be measured as neg-
ative times, just as objects on the x-axis to the left of the origin have negative values of 
position. Negative numbers are not to be avoided; they simply locate an event in space 
or time relative to an origin.

To illustrate, FIGURE 1.5a shows a sled sliding down a snow-covered hill. FIGURE 1.5b is  
a motion diagram for the sled, over which we’ve drawn an xy-coordinate system. You 
can see that the sled’s position is 1x3, y32 = 115 m, 15 m2 at time t3 = 3 s. Notice how 
we’ve used subscripts to indicate the time and the object’s position in a specific frame 
of the motion diagram.

   NOTE     The frame at t = 0 s is frame 0. That is why the fourth frame is labeled 3.

Another way to locate the sled is to draw its position vector: an arrow from the 
origin to the point representing the sled. The position vector is given the symbol r u. 
Figure 1.5b shows the position vector r u

3 = 121 m, 45°2. The position vector r u does not 
tell us anything different than the coordinates 1x, y2. It simply provides the informa-
tion in an alternative form.

(a)

The sled’s position in frame 3
can be specified with coordinates.

Alternatively, the position
can be specified by the
position vector.

r3 = (21 m, 45°)

(x3, y3) = (15 m, 15 m)
t3 = 3 s

u

(b)

45°

y (m)

x (m) 0

10

20

100 20 30

FIGURE 1.5  Motion diagram of a sled with 
frames made every 1 s.
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28  CHAPTER 1 Concepts of Motion

Scalars and Vectors
Some physical quantities, such as time, mass, and temperature, can be described com-
pletely by a single number with a unit. For example, the mass of an object is 6 kg 
and its temperature is 30°C. A single number (with a unit) that describes a physical 
quantity is called a scalar. A scalar can be positive, negative, or zero.

Many other quantities, however, have a directional aspect and cannot be described 
by a single number. To describe the motion of a car, for example, you must specify not 
only how fast it is moving, but also the direction in which it is moving. A quantity hav-
ing both a size (the “How far?” or “How fast?”) and a direction (the “Which way?”) is 
called a vector. The size or length of a vector is called its magnitude. Vectors will be 
studied thoroughly in Chapter 3, so all we need for now is a little basic information.

We indicate a vector by drawing an arrow over the letter that represents the quan-
tity. Thus r u and A

u
 are symbols for vectors, whereas r and A, without the arrows, are 

symbols for scalars. In handwritten work you must draw arrows over all symbols that 
represent vectors. This may seem strange until you get used to it, but it is very important 
because we will often use both r and r u, or both A and A

u
, in the same problem, and they 

mean different things! Note that the arrow over the symbol always points to the right, 
regardless of which direction the actual vector points. Thus we write r u or A

u
, never r z or A

z
.

Displacement
We said that motion is the change in an object’s position with time, but how do we 
show a change of position? A motion diagram is the perfect tool. FIGURE 1.6 is the 
motion diagram of a sled sliding down a snow-covered hill. To show how the sled’s 
position changes between, say, t3 = 3 s and t4 = 4 s, we draw a vector arrow between 
the two dots of the motion diagram. This vector is the sled’s displacement, which  
is given the symbol ∆r u. The Greek letter delta 1∆2 is used in math and science to 
indicate the change in a quantity. In this case, as we’ll show, the displacement ∆r u is 
the change in an object’s position.

   NOTE     ∆r u is a single symbol. It shows “from here to there.” You cannot cancel out 
or remove the ∆.

Notice how the sled’s position vector r u
4 is a combination of its early position r u

3 with  
the displacement vector ∆r u. In fact, r u

4 is the vector sum of the vectors r u
3 and  

∆r u. This is written

	    r u
4 = r u

3 + ∆r u	 (1.1)

Here we’re adding vector quantities, not numbers, and vector addition differs from “reg-
ular” addition. We’ll explore vector addition more thoroughly in Chapter 3, but for now 
you can add two vectors A

u
 and B

u
 with the three-step procedure of ❮❮ TACTICS BOX 1.1.

The sled’s displacement between
t3 = 3 s and t4 = 4 s is the vector 
drawn from one postion to the next.

t3 = 3 s

t4 = 4 s

r4
u

r3
u

∆r
u

y (m)

x (m)0

10

20

100 20 30

FIGURE 1.6  The sled undergoes a 
displacement ∆r u from position r u

3 
to position r u

4.

TACTICS BOX 1.1

Vector addition
1

2

3

To add B to A: Draw A.

Place the tail of
B at the tip of A.

Draw an arrow from
the tail of A to the
tip of B. This is
vector A + B. A + B

A
u

B
u

A
u

A
u

A
u

B
u

u

u

u

u

u

u

u

u u

uu

B
u
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1.3  Position, Time, and Displacement  29

If you examine Figure 1.6, you’ll see that the steps of Tactics Box 1.1 are exactly 
how r u

3 and ∆r u are added to give r u
4.

   NOTE     A vector is not tied to a particular location on the page. You can move a 
vector around as long as you don’t change its length or the direction it points. Vector 
B
u

 is not changed by sliding it to where its tail is at the tip of A
u

.

Equation 1.1 told us that r u
4 = r u

3 + ∆r u. This is easily rearranged to give a more 
precise definition of displacement: The displacement 𝚫ru of an object as it moves 
from one position rua to a different position rub is

	 ∆ru = rub - rua	 (1.2)

That is, displacement is the change (i.e., the difference) in position. Graphically, 𝚫ru 
is a vector arrow drawn from position rua to position rub.

Motion Diagrams with Displacement Vectors
The first step in analyzing a motion diagram is to determine all of the displacement 
vectors, which are simply the arrows connecting each dot to the next. Label each 
arrow with a vector symbol ∆r u

n, starting with n = 0. FIGURE 1.7 shows the motion dia-
grams of Figure 1.4 redrawn to include the displacement vectors.

   NOTE     When an object either starts from rest or ends at rest, the initial or final dots 
are as close together as you can draw the displacement vector arrow connecting 
them. In addition, just to be clear, you should write “Start” or “Stop” beside the 
initial or final dot. It is important to distinguish stopping from merely slowing down.

Now we can conclude, more precisely than before, that, as time proceeds:

■■ An object is speeding up if its displacement vectors are increasing in length.
■■ An object is slowing down if its displacement vectors are decreasing in length.

(a) Rocket launch

(b) Car stopping 

Start

Stop

∆r3

∆r2

∆r1

∆r0

∆r1 ∆r2 ∆r3

u

u

u

u

∆r0
u u u u

FIGURE 1.7  Motion diagrams with the 
displacement vectors.

Alice is sliding along a smooth, icy road on her sled when she suddenly runs headfirst  
into a large, very soft snowbank that gradually brings her to a halt. Draw a motion 
diagram for Alice. Show and label all displacement vectors.

MODEL  The details of Alice and the sled—their size, shape, color, and so on—are not 
relevant to understanding their overall motion. So we can model Alice and the sled as 
one particle.

VISUALIZE  FIGURE 1.8 shows a motion diagram. The problem statement suggests that 
the sled’s speed is very nearly constant until it hits the snowbank. Thus the displacement 
vectors are of equal length as Alice slides along the icy road. She begins slowing when 
she hits the snowbank, so the displacement vectors then get shorter until the sled stops. 
We’re told that her stop is gradual, so we want the vector lengths to get shorter gradually 
rather than suddenly.

EXAMPLE 1.1  ■  Headfirst into the snow

The displacement vectors
are getting shorter, so she’s
slowing down.

Stop

Hits snowbank

This is motion at constant speed
because the displacement vectors 
are a constant length.

∆r0 ∆r1 ∆r2 ∆r3
u u u u ∆r4

u ∆r5
u ∆r6

u

FIGURE 1.8  The motion diagram of Alice and the sled.
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30  CHAPTER 1 Concepts of Motion

Time Interval
It’s also useful to consider a change in time. For example, the clock readings of two 
frames of a video might be t1 and t2. The specific values are arbitrary because they 
are timed relative to an arbitrary instant that you chose to call t = 0. But the time 
interval ∆t = t2 - t1 is not arbitrary. It represents the elapsed time for the object to 
move from one position to the next.

The time interval 𝚫t ∙ tb ∙ ta measures the elapsed time as an object moves 
from position rua at time ta to position rub at time tb. The value of 𝚫t is independent 
of the specific clock used to measure the times.

To summarize the main idea of this section, we have added coordinate systems 
and clocks to our motion diagrams in order to measure when each frame was exposed 
and where the object was located at that time. Different observers of the motion may 
choose different coordinate systems and different clocks. However, all observers find 
the same values for the displacements ∆r u and the time intervals ∆t because these are 
independent of the specific coordinate system used to measure them.

1.4  Velocity
It’s no surprise that, during a given time interval, a speeding bullet travels farther than 
a speeding snail. To extend our study of motion so that we can compare the bullet to 
the snail, we need a way to measure how fast or how slowly an object moves.

One quantity that measures an object’s fastness or slowness is its average speed, 
defined as the ratio

	   average speed =
distance traveled

time interval spent traveling
=

d
∆t

	 (1.3)

If you drive 15 miles (mi) in 30 minutes 11
2 h2, your average speed is

	   average speed =
15 mi

1
2 h

= 30 mph	 (1.4)

Although the concept of speed is widely used in our day-to-day lives, it is not a 
sufficient basis for a science of motion. To see why, imagine you’re trying to land a jet 
plane on an aircraft carrier. It matters a great deal to you whether the aircraft carrier 
is moving at 20 mph (miles per hour) to the north or 20 mph to the east. Simply know-
ing that the ship’s speed is 20 mph is not enough information!

It’s the displacement ∆r u, a vector quantity, that tells us not only the distance trav-
eled by a moving object, but also the direction of motion. Consequently, a more useful 
ratio than d /∆t is the ratio ∆r u/∆t. In addition to measuring how fast an object moves, 
this ratio is a vector that points in the direction of motion.

It is convenient to give this ratio a name. We call it the average velocity, and it 
has the symbol v 

u
avg. The average velocity of an object during the time interval 𝚫  t, 

in which the object undergoes a displacement 𝚫ru, is the vector

	   v 

u
avg =

∆r u

∆t
	 (1.5)

An object’s average velocity vector points in the same direction as the displace-
ment vector 𝚫ru. This is the direction of motion.

   NOTE     In everyday language we do not make a distinction between speed and 
velocity, but in physics the distinction is very important. In particular, speed is 
simply “How fast?” whereas velocity is “How fast, and in which direction?” As we 
go along we will be giving other words more precise meanings in physics than they 
have in everyday language.

A stopwatch is used to measure a time 
interval.

The victory goes to the runner with the 
highest average speed.
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