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Quotes on Ethics

Without ethics, everything happens as if we were all five billion passengers 
on a big machinery and nobody is driving the machinery. And it’s going 

faster and faster, but we don’t know where.

—Jacques Cousteau

Because you’re able to do it and because you have the right to do it doesn’t 
mean it’s right to do it.

—Laura Schlessinger 

A man without ethics is a wild beast loosed upon this world.

—Manly Hall

The concern for man and his destiny must always be the chief interest of all 
technical effort. Never forget it among your diagrams and equations.

—Albert Einstein

Cowardice asks the question, ‘Is it safe?’ Expediency asks the question, ‘Is it 
politic?’ Vanity asks the question, ‘Is it popular?’ But, conscience asks the 
question, ‘Is it right?’ And there comes a time when one must take a posi-

tion that is neither safe, nor politic, nor popular but one must take it because 
one’s conscience tells one that it is right.

—Martin Luther King, Jr

To educate a man in mind and not in morals is to educate a 
menace to society.

—Theodore Roosevelt

Politics which revolves around benefit is savagery.

—Said Nursi

The true test of civilization is, not the census, nor the size of the cities, nor 
the crops, but the kind of man that the country turns out.

—Ralph W. Emerson

The measure of a man’s character is what he would do if he knew he never 
would be found out.

—Thomas B. Macaulay
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B A C K G R O U N D
Thermodynamics is an exciting and fascinating subject that deals with energy, 

and thermodynamics has long been an essential part of engineering curricula 

all over the world. It has a broad application area ranging from microscopic 

organisms to common household appliances, transportation vehicles, power 

generation systems, and even philosophy. This introductory book contains 

sufficient material for two sequential courses in thermodynamics. Students 

are assumed to have an adequate background in calculus and physics.

O B J E C T I V E S
This book is intended for use as a textbook by undergraduate engineering stu-

dents in their sophomore or junior year, and as a reference book for practicing 

engineers. The objectives of this text are

• To cover the basic principles of thermodynamics.

• To present a wealth of real-world engineering examples to give  students 

a feel for how thermodynamics is applied in engineering practice.

• To develop an intuitive understanding of thermodynamics by emphasiz-

ing the physics and physical arguments that underpin the theory.

 It is our hope that this book, through its careful explanations of concepts and 

its use of numerous practical examples and figures, helps students develop the 

necessary skills to bridge the gap between knowledge and the confidence to 

properly apply knowledge.

P H I L O S O P H Y  A N D  G O A L
The philosophy that contributed to the overwhelming popularity of the prior 

editions of this book has remained unchanged in this edition. Namely, our 

goal has been to offer an engineering textbook that

• Communicates directly to the minds of tomorrow’s engineers in a 

simple yet precise manner.

• Leads students toward a clear understanding and firm grasp of the basic 
principles of thermodynamics.

• Encourages creative thinking and development of a deeper understand-
ing and intuitive feel for thermodynamics.

• Is read by students with interest and enthusiasm rather than being used 

as an aid to solve problems.

 Special effort has been made to appeal to students’ natural curiosity and to 

help them explore the various facets of the exciting subject area of thermo-

dynamics. The enthusiastic responses we have received from users of prior 

editions—from small colleges to large universities all over the world—and 

the continued translations into new languages indicate that our objectives 

P r e f a c e
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have largely been achieved. It is our philosophy that the best way to learn is 

by practice. Therefore, special effort is made throughout the book to reinforce 

material that was presented earlier.

 Yesterday’s engineer spent a major portion of his or her time substituting 

values into the formulas and obtaining numerical results. However, formula 

manipulations and number crunching are now being left mainly to computers. 

Tomorrow’s engineer will need a clear understanding and a firm grasp of the 

basic principles so that he or she can understand even the most complex prob-

lems, formulate them, and interpret the results. A conscious effort is made to 

emphasize these basic principles while also providing students with a per-

spective of how computational tools are used in engineering practice.

 The traditional classical, or macroscopic, approach is used throughout the 

text, with microscopic arguments serving in a supporting role as appropriate. 

This approach is more in line with students’ intuition and makes learning the 

subject matter much easier.

N E W  I N  T H I S  E D I T I O N
The primary change in this eighth edition of the text is the effective use of 

full color to enhance the learning experience of students and to make it more 

enjoyable. Another significant change is the addition of a new web chapter 

on Renewable Energy available via the Online Learning Center. The third 

important change is the update of the R-134a tables to make property values 

consistent with those from the latest version of EES. All the solved examples 

and end-of-chapter problems dealing with R-134a are modified to reflect 

this change. This edition includes numerous new problems with a variety of 

applications. Problems, whose solutions require parametric investigations and 

thus the use of a computer, are identified by a computer-EES icon, as before. 

Some existing problems from previous editions have been removed, and other 

updates and changes for clarity and readability have been made throughout 

the text.

 The eighth edition also includes McGraw-Hill’s Connect® Engineering. 

This online homework management tool allows assignment of algorithmic 

problems for homework, quizzes and tests. It connects students with the 

tools  and resources they’ll need to achieve success. To learn more, visit 

www.mcgrawhillconnect.com.

 McGraw-Hill LearnSmart™ is also available as an integrated feature 

of McGraw-Hill Connect® Engineering. It is an adaptive learning system 

designed to help students learn faster, study more efficiently, and retain more 

knowledge for greater success. LearnSmart assesses a student’s knowledge of 

course content through a series of adaptive questions. It pinpoints concepts 

the student does not understand and maps out a personalized study plan for 

success. Visit the following site for a demonstration: www.mhlearnsmart.com.

L E A R N I N G  T O O L S
EARLY INTRODUCTION OF THE FIRST LAW OF THERMODYNAMICS
The first law of thermodynamics is introduced early in Chapter 2, “Energy, 

Energy Transfer, and General Energy Analysis.” This introductory chapter 
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sets the framework of establishing a general understanding of various forms 

of energy, mechanisms of energy transfer, the concept of energy balance, 

thermo-economics, energy conversion, and conversion efficiency using 

fa mil iar settings that involve mostly electrical and mechanical forms of 

energy. It also exposes students to some exciting real-world applications 

of thermodynamics early in the course, and helps them establish a sense of 

the monetary value of energy. There is special emphasis on the utilization of 

renewable energy such as wind power and hydraulic energy, and the efficient 

use of existing resources.

EMPHASIS ON PHYSICS
A distinctive feature of this book is its emphasis on the physical aspects of the 

subject matter in addition to mathematical representations and manipulations. 

The authors believe that the emphasis in undergraduate education should 

remain on developing a sense of underlying physical mechanisms and a mas-
tery of solving practical problems that an engineer is likely to face in the real 

world. Developing an intuitive understanding should also make the course a 

more motivating and worthwhile experience for students.

EFFECTIVE USE OF ASSOCIATION
An observant mind should have no difficulty understanding engineering 

sciences. After all, the principles of engineering sciences are based on our 

everyday experiences and experimental observations. Therefore, a physi-

cal, intuitive approach is used throughout this text. Frequently, parallels are 
drawn between the subject matter and students’ everyday experiences so that 

they can relate the subject matter to what they already know. The process of 

cooking, for example, serves as an excellent vehicle to demonstrate the basic 

principles of thermodynamics.

SELF-INSTRUCTING
The material in the text is introduced at a level that an average student can 

follow comfortably. It speaks to students, not over students. In fact, it is self-
instructive. The order of coverage is from simple to general. That is, it starts 

with the simplest case and adds complexities gradually. In this way, the basic 

principles are repeatedly applied to different systems, and students master 

how to apply the principles instead of how to simplify a general formula. Not-

ing that the principles of sciences are based on experimental observations, all 

the derivations in this text are based on physical arguments, and thus they are 

easy to follow and understand.

EXTENSIVE USE OF ARTWORK
Figures are important learning tools that help students “get the picture,” and 

the text makes very effective use of graphics. This edition of Thermodynamics: 
An Engineering Approach, Eighth Edition features an enhanced art program 

done in four colors to provide more realism and pedagogical understand-

ing. Further, a large number of figures have been upgraded to become three-

dimensional and thus more real-life. Figures attract attention and stimulate 

curiosity and interest. Most of the figures in this text are intended to serve as a 

means of emphasizing some key concepts that would otherwise go unnoticed; 

some serve as page summaries.

cen98179_fm_i-xxvi.indd   xixcen98179_fm_i-xxvi.indd   xix 11/29/13   6:39 PM11/29/13   6:39 PM



xx
THERMODYNAMICS

LEARNING OBJECTIVES AND SUMMARIES
Each chapter begins with an overview of the material to be covered and 

chapter-specific learning objectives. A summary is included at the end of 

each chapter, providing a quick review of basic concepts and important rela-

tions, and pointing out the relevance of the material.

NUMEROUS WORKED-OUT EXAMPLES 
WITH A SYSTEMATIC SOLUTIONS PROCEDURE
Each chapter contains several worked-out examples that clarify the material and 

illustrate the use of the basic principles. An intuitive and systematic approach is 

used in the solution of the example problems, while maintaining an informal 

conversational style. The problem is first stated, and the objectives are identified. 

The assumptions are then stated, together with their justifications. The proper-

ties needed to solve the problem are listed separately if appropriate. Numerical 

values are used together with their units to emphasize that numbers without units 

are meaningless, and that unit manipulations are as important as manipulating 

the numerical values with a calculator. The significance of the findings is dis-

cussed following the solutions. This approach is also used consistently in the 

solutions presented in the instructor’s solutions manual.

A WEALTH OF REAL-WORLD END-OF-CHAPTER PROBLEMS
The end-of-chapter problems are grouped under specific topics to make prob-

lem selection easier for both instructors and students. Within each group of 

problems are Concept Questions, indicated by “C,” to check the students’ 

level of understanding of basic concepts. The problems under Review Prob-
lems are more comprehensive in nature and are not directly tied to any specific 

section of a chapter—in some cases they require review of material learned 

in previous chapters. Problems designated as Design and Essay are intended 

to encourage students to make engineering judgments, to conduct indepen-

dent exploration of topics of interest, and to communicate their findings in 

a professional manner. Problems designated by an “E” are in English units, 

and SI users can ignore them. Problems with the  are solved using EES, 

and complete solutions together with parametric studies are included on the 

textbook’s website. Problems with the  are comprehensive in nature and 

are intended to be solved with a computer, possibly using the EES software. 

Several economics- and safety-related problems are incorporated throughout 

to promote cost and safety awareness among engineering students. Answers 

to selected problems are listed immediately following the problem for conve-

nience to students. In addition, to prepare students for the Fundamentals of 

Engineering Exam (that is becoming more important for the outcome-based 

ABET 2000 criteria) and to facilitate multiple-choice tests, over 200 multiple-
choice problems are included in the end-of-chapter problem sets. They are 

placed under the title Fundamentals of Engineering (FE) Exam Problems for 

easy recognition. These problems are intended to check the understanding of 

fundamentals and to help readers avoid common pitfalls.

RELAXED SIGN CONVENTION
The use of a formal sign convention for heat and work is abandoned as it 

often becomes counterproductive. A physically meaningful and engag-

ing approach is adopted for interactions instead of a mechanical approach. 
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Subscripts “in” and “out,” rather than the plus and minus signs, are used to 

indicate the directions of interactions.

PHYSICALLY MEANINGFUL FORMULAS
The physically meaningful forms of the balance equations rather than formu-

las are used to foster deeper understanding and to avoid a cookbook approach. 

The mass, energy, entropy, and exergy balances for any system undergoing 

any process are expressed as

Mass balance:  min 2 mout 5 Dmsystem  

Energy balance:  Ein 2 Eout   5   DEsystem  

 Net energy transfer Change in internal, kinetic,

 by heat, work, and mass potential, etc., energies

Entropy balance:  Sin 2 Sout  1  Sgen  5  DSsystem  

 Net entropy transfer Entropy Change

 by heat and mass generation in entropy

Exergy balance:  Xin 2 Xout  2  Xdestroyed  5  DXsystem  

 Net exergy transfer Exergy Change

 by heat, work, and mass destruction in exergy

These relations reinforce the fundamental principles that during an actual 

process mass and energy are conserved, entropy is generated, and exergy is 

destroyed. Students are encouraged to use these forms of balances in early 

chapters after they specify the system, and to simplify them for the particular 

problem. A more relaxed approach is used in later chapters as students gain 

mastery.

A CHOICE OF SI ALONE OR SI/ENGLISH UNITS
In recognition of the fact that English units are still widely used in some 

industries, both SI and English units are used in this text, with an emphasis on 

SI. The material in this text can be covered using combined SI/English units 

or SI units alone, depending on the preference of the instructor. The property 

tables and charts in the appendices are presented in both units, except the ones 

that involve dimensionless quantities. Problems, tables, and charts in English 

units are designated by “E” after the number for easy recognition, and they 

can be ignored by SI users.

TOPICS OF SPECIAL INTEREST
Most chapters contain a section called “Topic of Special Interest” where 

interesting aspects of thermodynamics are discussed. Examples include Ther-
modynamic Aspects of Biological Systems in Chapter 4, Household Refrigera-
tors in Chapter 6, Second-Law Aspects of Daily Life in Chapter 8, and Saving 
Fuel and Money by Driving Sensibly in Chapter 9. The topics selected for 

these sections provide intriguing extensions to thermodynamics, but they can 

be ignored if desired without a loss in continuity.
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GLOSSARY OF THERMODYNAMIC TERMS
Throughout the chapters, when an important key term or concept is intro-

duced and defined, it appears in boldface type. Fundamental thermo dynamic 

terms and concepts also appear in a glossary located on our accompanying 

website (www.mhhe.com/cengel). This unique glossary helps to reinforce 

key terminology and is an excellent learning and review tool for students as 

they move forward in their study of thermodynamics. In addition, students 

can test their knowledge of these fundamental terms by using the flash cards 

and other interactive resources.

CONVERSION FACTORS
Frequently used conversion factors and physical constants are listed on the 

inner cover pages of the text for easy reference.

S U P P L E M E N T S
The following supplements are available to users of the book.

ENGINEERING EQUATION SOLVER (EES)
Developed by Sanford Klein and William Beckman from the University of 

Wisconsin—Madison, this software combines equation-solving capability 

and engineering property data. EES can do optimization, parametric analysis, 

and linear and nonlinear regression, and provides publication-quality plot-

ting capabilities. Thermodynamics and transport properties for air, water, and 

many other fluids are built in, and EES allows the user to enter property data 

or functional relationships.

 EES is a powerful equation solver with built-in functions and property 

tables for thermodynamic and transport properties as well as automatic unit 

checking capability. It requires less time than a calculator for data entry and 

allows more time for thinking critically about modeling and solving engineer-

ing problems. Look for the EES icons in the homework problems sections of 

the text.

 The Limited Academic Version of EES is available for departmental license 

upon adoption of the Eighth Edition of Thermodynamics: An Engineering 

Approach (meaning that the text is required for students in the course). You 

may load this software onto your institution’s computer system, for use by 

students and faculty related to the course, as long as the arrangement between 

McGraw-Hill Education and F-Chart is in effect. There are minimum order 

requirements stipulated by F-Chart to qualify.

PROPERTIES TABLE BOOKLET
(ISBN 0-07-762477-7)
This booklet provides students with an easy reference to the most important 

property tables and charts, many of which are found at the back of the text-

book in both the SI and English units.

COSMOS
McGraw-Hill’s COSMOS (Complete Online Solutions Manual Organization 

System) allows instructors to streamline the creation of assignments, quizzes, 

and tests by using problems and solutions from the textbook, as well as their own 

custom material. COSMOS is now available online at http://cosmos.mhhe.com/
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MCGRAW-HILL CONNECT® ENGINEERING
McGraw-Hill Connect Engineering is a web-based assignment and assessment 

platform that gives students the means to better connect with their course-

work, with their instructors, and with the important concepts that they will 

need to know for success now and in the future. With Connect Engineering, 

instructors can deliver assignments, quizzes, and tests easily online. Students 

can practice important skills at their own pace and on their own schedule.

 Connect Engineering for Thermodynamics: An Engineering Approach, 

Eighth Edition is available via the text website at www.mhhe.com/cengel

COSMOS
McGraw-Hill’s COSMOS (Complete Online Solutions Manual Organization 

System) allows instructors to streamline the creation of assignments, quiz-

zes, and tests by using problems and solutions from the textbook, as well as 

their own custom material. COSMOS is now available online at http://cosmos.

mhhe.com/

WWW.MHHE.COM/CENGEL
This site offers resources for students and instructors.

The following resources are available for students:

• Glossary of Key Terms in Thermodynamics—Bolded terms in the text are 

defined in this accessible glossary. Organized at the chapter level or 

available as one large file.

• Student Study Guide—This resource outlines the fundamental concepts of 

the text and is a helpful guide that allows students to focus on the most 

important concepts. The guide can also serve as a lecture outline for 

instructors.

• Learning Objectives—The chapter learning objectives are outlined here. 

Organized by chapter and tied to ABET objectives.

• Self-Quizzing—Students can test their knowledge using multiple-choice 

quizzing. These self-tests provide immediate feedback and are an excellent 

learning tool.

• Flashcards—Interactive flashcards test student understanding of the text 

terms and their definitions. The program also allows students to flag terms 

that require further understanding.

• Crossword Puzzles—An interactive, timed puzzle that provides hints as well 

as a notes section.

• Errata—If errors should be found in the text, they will be reported here. 

Online Resources for Students and Instructors
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The following resources are available for instructors under password 

protection:

• Instructor Testbank—Additional problems prepared for instructors to assign 

to students. Solutions are given, and use of EES is recommended to verify 

accuracy.

• Correlation Guide—New users of this text will appreciate this resource. The 

guide provides a smooth transition for instructors not currently using the 

Çengel/Boles text.

• Image Library—The electronic version of the figures are supplied for easy 

integration into course presentations, exams, and assignments.

• Instructor’s Guide—Provides instructors with helpful tools such as sample 

syllabi and exams, an ABET conversion guide, a thermodynamics glossary, 

and chapter objectives.

• Errata—If errors should be found in the solutions manual, they will be 

reported here.

• Solutions Manual—The detailed solutions to all text homework problems are 

provided in PDF form.

• EES Solutions Manual—The entire solutions manual is also available in 

EES. Any problem in the text can be modified and the solution of the 

modified problem can readily be obtained by copying and pasting the given 

EES solution on a blank EES screen and hitting the solve button.

• PP slides—Powerpoint presentation slides for all chapters in the text are 

available for use in lectures

• Appendices—These are provided in PDF form for ease of use.
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1

I N T R O D U C T I O N  A N D 
B A S I C  C O N C E P T S

Every science has a unique vocabulary associated with it, and thermo-

dynamics is no exception. Precise definition of basic concepts forms 

a sound foundation for the development of a science and prevents 

possible misunderstandings. We start this chapter with an overview of ther-

modynamics and the unit systems, and continue with a discussion of some 

basic concepts such as system, state, state postulate, equilibrium, and pro-
cess. We discuss intensive and extensive properties of a system and define 

density, specific gravity, and specific weight. We also discuss temperature 

and temperature scales with particular emphasis on the International Tem-

perature Scale of 1990. We then present pressure, which is the normal force 

exerted by a fluid per unit area and discuss absolute and gage pressures, the 

variation of pressure with depth, and pressure measurement devices, such 

as manometers and barometers. Careful study of these concepts is essential 

for a good understanding of the topics in the following chapters. Finally, we 

present an intuitive systematic problem-solving technique that can be used 

as a model in solving engineering problems.

1

1
OBJECTIVES

The objectives of Chapter 1 are to:

■ Identify the unique vocabulary 

associated with thermodynamics 

through the precise definition of 

basic concepts to form a sound 

foundation for the development 

of the principles of thermody-

namics.

■ Review the metric SI and the 

English unit systems that will be 

used throughout the text.

■ Explain the basic concepts 

of thermodynamics such as 

system, state, state postulate, 

equilibrium, process, and cycle.

■ Discuss properties of a system 

and define density, specific 

gravity, and specific weight.

■ Review concepts of temperature, 

temperature scales, pressure, 

and absolute and gage pressure.

■ Introduce an intuitive systematic 

problem-solving technique.

     CHAPTER
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1–1 ■ THERMODYNAMICS AND ENERGY
Thermodynamics can be defined as the science of energy. Although every-

body has a feeling of what energy is, it is difficult to give a precise defini-

tion for it. Energy can be viewed as the ability to cause changes.

 The name thermodynamics stems from the Greek words therme (heat) and 

dynamis (power), which is most descriptive of the early efforts to convert 

heat into power. Today the same name is broadly interpreted to include all 

aspects of energy and energy transformations including power generation, 

refrigeration, and relationships among the properties of matter.

 One of the most fundamental laws of nature is the conservation of energy 
principle. It simply states that during an interaction, energy can change from 

one form to another but the total amount of energy remains constant. That is, 

energy cannot be created or destroyed. A rock falling off a cliff, for example, 

picks up speed as a result of its potential energy being converted to kinetic 

energy (Fig. 1–1). The conservation of energy principle also forms the back-

bone of the diet industry: A person who has a greater energy input (food) 

than energy output (exercise) will gain weight (store energy in the form 

of fat), and a person who has a smaller energy input than output will lose 

weight (Fig. 1–2). The change in the energy content of a body or any other 

system is equal to the difference between the energy input and the energy 

output, and the energy balance is expressed as Ein 2 Eout 5 DE.

 The first law of thermodynamics is simply an expression of the con-

servation of energy principle, and it asserts that energy is a thermodynamic 

property. The second law of thermodynamics asserts that energy has 

quality as well as quantity, and actual processes occur in the direction of 

decreasing quality of energy. For example, a cup of hot coffee left on a table 

eventually cools, but a cup of cool coffee in the same room never gets hot 

by itself (Fig. 1–3). The high-temperature energy of the coffee is degraded 

(transformed into a less useful form at a lower temperature) once it is trans-

ferred to the surrounding air.

 Although the principles of thermodynamics have been in existence since 

the creation of the universe, thermodynamics did not emerge as a science 

until the construction of the first successful atmospheric steam engines in 

England by Thomas Savery in 1697 and Thomas Newcomen in 1712. These 

engines were very slow and inefficient, but they opened the way for the 

development of a new science.

 The first and second laws of thermodynamics emerged simultaneously in 

the 1850s, primarily out of the works of William Rankine, Rudolph Clausius, 

and Lord Kelvin (formerly William Thomson). The term thermodynamics 

was first used in a publication by Lord Kelvin in 1849. The first thermody-

namics textbook was written in 1859 by William Rankine, a professor at the 

University of Glasgow.

 It is well-known that a substance consists of a large number of particles 

called molecules. The properties of the substance naturally depend on the 

behavior of these particles. For example, the pressure of a gas in a container 

is the result of momentum transfer between the molecules and the walls of 

the container. However, one does not need to know the behavior of the gas 

particles to determine the pressure in the container. It would be sufficient to 

attach a pressure gage to the container. This macroscopic approach to the 

FIGURE 1–1
Energy cannot be created or 

destroyed; it can only change 

forms (the first law).

Potential

energy

Kinetic

energyPE = 7 units

KE = 3 units

PE = 10 units

KE = 0

FIGURE 1–2
Conservation of energy principle for 

the human body.

Energy out

(4 units)

Energy in

(5 units)

Energy storage

(1 unit)

FIGURE 1–3
Heat flows in the direction of 

decreasing temperature.

Heat

Cool

environment

20°C

Hot

coffee

70°C
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study of thermodynamics that does not require a knowledge of the behavior 

of individual particles is called classical thermodynamics. It provides a 

direct and easy way to the solution of engineering problems. A more elabo-

rate approach, based on the average behavior of large groups of individual 

particles, is called statistical thermodynamics. This microscopic approach 

is rather involved and is used in this text only in the supporting role.

Application Areas of Thermodynamics
All activities in nature involve some interaction between energy and matter; 

thus, it is hard to imagine an area that does not relate to thermodynam-

ics in some manner. Therefore, developing a good understanding of basic 

principles of thermodynamics has long been an essential part of engineering 

education.

 Thermodynamics is commonly encountered in many engineering systems 

and other aspects of life, and one does not need to go very far to see some 

application areas of it. In fact, one does not need to go anywhere. The heart 

is constantly pumping blood to all parts of the human body, various energy 

conversions occur in trillions of body cells, and the body heat generated is 

constantly rejected to the environment. The human comfort is closely tied to 

the rate of this metabolic heat rejection. We try to control this heat transfer 

rate by adjusting our clothing to the environmental conditions.

 Other applications of thermodynamics are right where one lives. An ordi-

nary house is, in some respects, an exhibition hall filled with wonders of 

thermodynamics (Fig. 1–4). Many ordinary household utensils and appli-

ances are designed, in whole or in part, by using the principles of thermo-

dynamics. Some examples include the electric or gas range, the heating 

and air-conditioning systems, the refrigerator, the humidifier, the pressure 

cooker, the water heater, the shower, the iron, and even the computer and 

the TV. On a larger scale, thermodynamics plays a major part in the design 

and analysis of automotive engines, rockets, jet engines, and conventional or 

nuclear power plants, solar collectors, and the design of vehicles from ordi-

nary cars to airplanes (Fig. 1–5). The energy-efficient home that you may 

be living in, for example, is designed on the basis of minimizing heat loss 

in winter and heat gain in summer. The size, location, and the power input 

of the fan of your computer is also selected after an analysis that involves 

thermodynamics.

1–2 ■ IMPORTANCE OF DIMENSIONS AND UNITS
Any physical quantity can be characterized by dimensions. The magnitudes 

assigned to the dimensions are called units. Some basic dimensions such 

as mass m, length L, time t, and temperature T are selected as primary or 

fundamental dimensions, while others such as velocity V, energy E, and 

volume V are expressed in terms of the primary dimensions and are called 

secondary dimensions, or derived dimensions.

 A number of unit systems have been developed over the years. Despite 

strong efforts in the scientific and engineering community to unify the 

world with a single unit system, two sets of units are still in common 

use today: the English system, which is also known as the United States 

FIGURE 1–4
The design of many engineering 

systems, such as this solar hot water 

system, involves thermodynamics.

Solar

collectors

Hot

water

Heat

exchanger Pump

Shower

Cold

water

Hot water tank
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Customary System (USCS), and the metric SI (from Le Système Interna-
tional d’ Unités), which is also known as the International System. The SI 

is a simple and logical system based on a decimal relationship between 

the various units, and it is being used for scientific and engineering work 

in most of the industrialized nations, including England. The English sys-

tem, however, has no apparent systematic numerical base, and various units 

in this system are related to each other rather arbitrarily (12 in 5 1 ft, 

1 mile 5 5280 ft, 4 qt 5 1 gal, etc.), which makes it confusing and difficult 

to learn. The United States is the only industrialized country that has not yet 

fully converted to the metric system.

 The systematic efforts to develop a universally acceptable system of 

units dates back to 1790 when the French National Assembly charged the 

French Academy of Sciences to come up with such a unit system. An early 

version of the metric system was soon developed in France, but it did not 

FIGURE 1–5
Some application areas of thermodynamics.
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find universal acceptance until 1875 when The Metric Convention Treaty 

was prepared and signed by 17 nations, including the United States. In this 

international treaty, meter and gram were established as the metric units 

for length and mass, respectively, and a General Conference of Weights 
and Measures (CGPM) was established that was to meet every six years. 

In 1960, the CGPM produced the SI, which was based on six fundamental 

quantities, and their units were adopted in 1954 at the Tenth General Con-

ference of Weights and Measures: meter (m) for length, kilogram (kg) for 

mass, second (s) for time, ampere (A) for electric current, degree Kelvin 

(°K) for temperature, and candela (cd) for luminous intensity (amount of 

light). In 1971, the CGPM added a seventh fundamental quantity and unit: 

mole (mol) for the amount of matter.

 Based on the notational scheme introduced in 1967, the degree symbol 

was officially dropped from the absolute temperature unit, and all unit 

names were to be written without capitalization even if they were derived 

from proper names (Table 1–1). However, the abbreviation of a unit was 

to be capitalized if the unit was derived from a proper name. For example, 

the SI unit of force, which is named after Sir Isaac Newton (1647–1723), 

is newton (not Newton), and it is abbreviated as N. Also, the full name of a 

unit may be pluralized, but its abbreviation cannot. For example, the length 

of an object can be 5 m or 5 meters, not 5 ms or 5 meter. Finally, no period 

is to be used in unit abbreviations unless they appear at the end of a sen-

tence. For example, the proper abbreviation of meter is m (not m.).

 The recent move toward the metric system in the United States seems to 

have started in 1968 when Congress, in response to what was happening 

in the rest of the world, passed a Metric Study Act. Congress continued 

to promote a voluntary switch to the metric system by passing the Metric 

Conversion Act in 1975. A trade bill passed by Congress in 1988 set a 

September 1992 deadline for all federal agencies to convert to the metric 

system. However, the deadlines were relaxed later with no clear plans for 

the future.

 The industries that are heavily involved in international trade (such as the 

automotive, soft drink, and liquor industries) have been quick in convert-

ing to the metric system for economic reasons (having a single worldwide 

design, fewer sizes, smaller inventories, etc.). Today, nearly all the cars 

manufactured in the United States are metric. Most car owners probably do 

not realize this until they try an English socket wrench on a metric bolt. 

Most industries, however, resisted the change, thus slowing down the con-

version process.

 Presently the United States is a dual-system society, and it will stay that 

way until the transition to the metric system is completed. This puts an extra 

burden on today’s engineering students, since they are expected to retain 

their understanding of the English system while learning, thinking, and 

working in terms of the SI. Given the position of the engineers in the transi-

tion period, both unit systems are used in this text, with particular emphasis 

on SI units.

 As pointed out, the SI is based on a decimal relationship between units. 

The prefixes used to express the multiples of the various units are listed in 

Table 1–2. They are standard for all units, and the student is encouraged to 

memorize them because of their widespread use (Fig. 1–6).

TABLE 1–1

The seven fundamental (or primary) 

dimensions and their units in SI

Dimension Unit

Length meter (m)

Mass kilogram (kg)

Time second (s)

Temperature kelvin (K)

Electric current ampere (A)

Amount of light candela (cd)

Amount of matter mole (mol)

TABLE 1–2

Standard prefixes in SI units

Multiple Prefix

1024 yotta, Y

1021 zetta, Z

1018 exa, E

1015 peta, P

1012 tera, T

109 giga, G

106 mega, M

103 kilo, k

102 hecto, h

101 deka, da

1021 deci, d

1022 centi, c

1023 milli, m

1026 micro, m

1029 nano, n

10212 pico, p

10215 femto, f

10218 atto, a

10221 zepto, z

10224 yocto, y

FIGURE 1–6
The SI unit prefixes are used in all 

branches of engineering.

1 kg200 mL
(0.2 L) (103 g)

1 M�

(106 �)
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Some SI and English Units
In SI, the units of mass, length, and time are the kilogram (kg), meter (m), 

and second (s), respectively. The respective units in the English system are 

the pound-mass (lbm), foot (ft), and second (s). The pound symbol lb is 

actually the abbreviation of libra, which was the ancient Roman unit of 

weight. The English retained this symbol even after the end of the Roman 

occupation of Britain in 410. The mass and length units in the two systems 

are related to each other by

 1 lbm 5 0.45359 kg

 1 ft 5 0.3048 m

 In the English system, force is usually considered to be one of the 

primary dimensions and is assigned a nonderived unit. This is a source 

of confusion and error that necessitates the use of a dimensional 

constant (gc) in many formulas. To avoid this nuisance, we consider 

force to be a secondary dimension whose unit is derived from Newton’s 

second law, that is,

 Force 5 (Mass)(Acceleration)

or

  F 5 ma (1–1)

In SI, the force unit is the newton (N), and it is defined as the force required 
to accelerate a mass of 1 kg at a rate of 1 m/s2. In the English system, the 

force unit is the pound-force (lbf) and is defined as the force required to 
accelerate a mass of 32.174 lbm (1 slug) at a rate of 1 ft/s2 (Fig. 1–7). That is,

1 N 5 1 kg·m/s2

 1 lbf 5 32.174 lbm·ft/s2

A force of 1 N is roughly equivalent to the weight of a small apple 

(m 5 102 g), whereas a force of 1 lbf is roughly equivalent to the weight of 

four medium apples (mtotal 5 454 g), as shown in Fig. 1–8. Another force 

unit in common use in many European countries is the kilogram-force (kgf), 

which is the weight of 1 kg mass at sea level (1 kgf 5 9.807 N).

 The term weight is often incorrectly used to express mass, particularly 

by the “weight watchers.” Unlike mass, weight W is a force. It is the gravi-

tational force applied to a body, and its magnitude is determined from 

Newton’s second law,

 W 5 mg (N) (1–2)

where m is the mass of the body, and g is the local gravitational acceleration 

(g is 9.807 m/s2 or 32.174 ft/s2 at sea level and 45° latitude). An ordinary 

bathroom scale measures the gravitational force acting on a body.

 The mass of a body remains the same regardless of its location in the 

universe. Its weight, however, changes with a change in gravitational 

acceleration. A body weighs less on top of a mountain since g decreases 

FIGURE 1–7
The definition of the force units.

m = 1 kg

m = 32.174 lbm

a = 1 m/s2

a = 1 ft/s2

F = 1 lbf

F = 1 N

FIGURE 1–8
The relative magnitudes of the force 

units newton (N), kilogram-force (kgf), 

and pound-force (lbf).

1 kgf

10 apples
m � 1 kg

4 apples
m � 1 lbm

1 lbf

1 apple
m � 102 g

1 N
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with altitude. On the surface of the moon, an astronaut weighs about one-

sixth of what she or he normally weighs on earth (Fig. 1–9).

 At sea level a mass of 1 kg weighs 9.807 N, as illustrated in Fig. 1–10. A 

mass of 1 lbm, however, weighs 1 lbf, which misleads people to believe that 

pound-mass and pound-force can be used interchangeably as pound (lb), 

which is a major source of error in the English system.

 It should be noted that the gravity force acting on a mass is due to the 

attraction between the masses, and thus it is proportional to the mag-

nitudes of the masses and inversely proportional to the square of the dis-

tance between them. Therefore, the gravitational acceleration g at a location 

depends on the local density of the earth’s crust, the distance to the center 

of the earth, and to a lesser extent, the positions of the moon and the sun. 

The value of g varies with location from 9.832 m/s2 at the poles (9.789 at 

the equator) to 7.322 m/s2 at 1000 km above sea level. However, at altitudes 

up to 30 km, the variation of g from the sea-level value of 9.807 m/s2 is 

less than 1 percent. Therefore, for most practical purposes, the gravitational 

acceleration can be assumed to be constant at 9.807 m/s2, often rounded to 

9.81 m/s2. It is interesting to note that at locations below sea level, the value 

of g increases with distance from the sea level, reaches a maximum at about 

4500 m, and then starts decreasing. (What do you think the value of g is at 

the center of the earth?)

 The primary cause of confusion between mass and weight is that mass is 

usually measured indirectly by measuring the gravity force it exerts. This 

approach also assumes that the forces exerted by other effects such as air 

buoyancy and fluid motion are negligible. This is like measuring the dis-

tance to a star by measuring its red shift, or measuring the altitude of an 

airplane by measuring barometric pressure. Both of these are also indirect 

measurements. The correct direct way of measuring mass is to compare it 

to a known mass. This is cumbersome, however, and it is mostly used for 

calibration and measuring precious metals.

 Work, which is a form of energy, can simply be defined as force times 

distance; therefore, it has the unit “newton-meter (N·m),” which is called a 

joule (J). That is,

 1 J 5 1 N·m (1–3)

A more common unit for energy in SI is the kilojoule (1 kJ 5 103 J). In the 

English system, the energy unit is the Btu (British thermal unit), which is 

defined as the energy required to raise the temperature of 1 lbm of water at 

68°F by 1°F. In the metric system, the amount of energy needed to raise the 

temperature of 1 g of water at 14.5°C by 1°C is defined as 1 calorie (cal), 

and 1 cal 5 4.1868 J. The magnitudes of the kilojoule and Btu are almost 

identical (1 Btu 5 1.0551 kJ). Here is a good way to get a feel for these 

units: If you light a typical match and let it burn itself out, it yields approxi-

mately one Btu (or one kJ) of energy (Fig. 1–11).

 The unit for time rate of energy is joule per second (J/s), which is called 

a watt (W). In the case of work, the time rate of energy is called power. 

A commonly used unit of power is horsepower (hp), which is equivalent 

to 746 W. Electrical energy typically is expressed in the unit kilowatt-hour 

(kWh), which is equivalent to 3600 kJ. An electric appliance with a rated 

power of 1 kW consumes 1 kWh of electricity when running continuously 

FIGURE 1–9
A body weighing 150 lbf on earth will 

weigh only 25 lbf on the moon.

FIGURE 1–10
The weight of a unit mass at sea level.

g = 9.807 m/s2

W = 9.807 kg·m/s2

 = 9.807 N
 = 1 kgf

W = 32.174 lbm·ft/s2

 = 1 lbf

g = 32.174 ft/s2

kg lbm

FIGURE 1–11
A typical match yields about one Btu (or 

one kJ) of energy if completely burned.

Photo by John M. Cimbala
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for one hour. When dealing with electric power generation, the units kW 

and kWh are often confused. Note that kW or kJ/s is a unit of power, 

whereas kWh is a unit of energy. Therefore, statements like “the new wind 

turbine will generate 50 kW of electricity per year” are meaningless and 

incorrect. A correct statement should be something like “the new wind tur-

bine with a rated power of 50 kW will generate 120,000 kWh of electricity 

per year.”

Dimensional Homogeneity
We all know that apples and oranges do not add. But we somehow man-

age to do it (by mistake, of course). In engineering, all equations must be 

dimensionally homogeneous. That is, every term in an equation must have 

the same unit. If, at some stage of an analysis, we find ourselves in a posi-

tion to add two quantities that have different units, it is a clear indication 

that we have made an error at an earlier stage. So checking dimensions can 

serve as a valuable tool to spot errors.

EXAMPLE 1–1    Electric Power Generation by a Wind Turbine

A school is paying $0.12/kWh for electric power. To reduce its power bill, 

the school installs a wind turbine (Fig. 1–12) with a rated power of 30 kW. 

If the turbine operates 2200 hours per year at the rated power, determine 

the amount of electric power generated by the wind turbine and the money 

saved by the school per year.

SOLUTION  A wind turbine is installed to generate electricity. The amount of 

electric energy generated and the money saved per year are to be determined.

Analysis  The wind turbine generates electric energy at a rate of 30 kW or 

30 kJ/s. Then the total amount of electric energy generated per year becomes

Total energy 5 (Energy per unit time)(Time interval)

  5 (30 kW)(2200 h)

  5 66,000 kWh

The money saved per year is the monetary value of this energy determined as 

Money saved 5 (Total energy)(Unit cost of energy)

 5 (66,000 kWh)($0.12/kWh)

 5 $7920

Discussion  The annual electric energy production also could be determined 

in kJ by unit manipulations as

Total energy 5  (30 kW)(2200 h)a3600 s

1 h
b a1 kJ/s

1 kW
b 5 2.38 3 108 kJ

which is equivalent to 66,000 kWh (1 kWh = 3600 kJ).

 We all know from experience that units can give terrible headaches if they 

are not used carefully in solving a problem. However, with some attention 

and skill, units can be used to our advantage. They can be used to check 

formulas; sometimes they can even be used to derive formulas, as explained 

in the following example.

FIGURE 1–12
A wind turbine, as discussed in 

Example 1–1.

©Bear Dancer Studios/Mark Dierker RF
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EXAMPLE 1–2    Obtaining Formulas from Unit Considerations

A tank is filled with oil whose density is r 5 850 kg/m3. If the volume of the 

tank is V 5 2 m3, determine the amount of mass m in the tank.

SOLUTION  The volume of an oil tank is given. The mass of oil is to be 

determined.

Assumptions  Oil is a nearly incompressible substance and thus its density 

is constant.

Analysis  A sketch of the system just described is given in Fig. 1–13. 

Suppose we forgot the formula that relates mass to density and volume. 

However, we know that mass has the unit of kilograms. That is, whatever 

calculations we do, we should end up with the unit of kilograms. Putting the 

given information into perspective, we have

r 5 850 kg/m3  and  V 5 2 m3

It is obvious that we can eliminate m3 and end up with kg by multiplying 

these two quantities. Therefore, the formula we are looking for should be

m 5 rV

Thus,

m 5 (850 kg/m3)(2 m3) 5 1700 kg

Discussion   Note that this approach may not work for more complicated for-

mulas. Nondimensional constants also may be present in the formulas, and 

these cannot be derived from unit considerations alone.

 You should keep in mind that a formula that is not dimensionally homo-

geneous is definitely wrong (Fig. 1–14), but a dimensionally homogeneous 

formula is not necessarily right.

Unity Conversion Ratios
Just as all nonprimary dimensions can be formed by suitable combina-

tions of primary dimensions, all nonprimary units (secondary units) can be 
formed by combinations of primary units. Force units, for example, can be 

expressed as

1 N 5 1 kg 
m

s2
  and  1 lbf 5 32.174 lbm 

ft

s2

They can also be expressed more conveniently as unity conversion ratios as

1 N

1 kg·m / s2
5 1  and  

1 lbf

32.174 lbm·ft / s2
5 1

 Unity conversion ratios are identically equal to 1 and are unitless, and 

thus such ratios (or their inverses) can be inserted conveniently into any 

calculation to properly convert units (Fig. 1–15). You are encouraged to 

always use unity conversion ratios such as those given here when converting 

units. Some textbooks insert the archaic gravitational constant gc defined as 

gc 5 32.174 lbm·ft/lbf·s2 5 1 kg·m/N·s2 5 1 into equations in order to force 

FIGURE 1–13
Schematic for Example 1–2.

Oil
   = 2 m3

m = ?
ρ = 850 kg/m3

FIGURE 1–14
Always check the units in your 

calculations.

FIGURE 1–15
Every unity conversion ratio (as well 

as its inverse) is exactly equal to one. 

Shown here are a few commonly used 

unity conversion ratios.

0.3048 m
1 ft

1 min
60 s

1 lbm
0.45359 kg

32.174 lbm?ft/s2

1 lbf
1 kg?m/s2

1 N

1 kPa
1000 N/m2

1 kJ
1000 N?m

1 W
1 J/s
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